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1 Basic Statistical Concepts

1.1 Averages

Let v1, ..., vN denote the values in the population. The population average (mean) is

µ =
1

N

N∑
i=1

vi

Population mean can also be described as the expected value of X , where X is a random
variable, value of a randomly selected population.

E(X) = µ

Let x1, ..., xn denote the values of our variable of interest in a random sample. The
sample mean or sample average is

x̄ =
1

n

n∑
i=1

xi

1.2 Variance and Standard Deviation

The population variance mesures the mount of intrinsic variability in the population.

σ2 =
1

N

N∑
i=1

(vi − µ)2

The sample variance measures the amount of variability in the sample.

S2 =
1

n− 1

n∑
i=1

(xi − x̄)2 =
1

n

((
n∑

i=1

x2i

)
− nx̄2

)
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2 Introduction to Probability

2.1 Sample Spaces, Events, and Set Operations

An experiment is any action whose outcome is random and results in well-defined
outcome.

A sample space is the set of all possible outcomes of an experiment, denoted by S.

An event is a subset of the sample space.

• Event with one outcome is a simple event

• Event that contains more than one outcome is compound event

Set operations are also used to represent events:

• Union of events is represented by A ∪B

• Intersection of events is represented by A ∩B

• Complement of event A is represented by Ac

• Difference of events is represented by A−B or A ∩Bc

• Disjoint or mutually exclusive events if they have no outcomes in common, A ∩
B = ∅

• A is a subset of B (A ⊆ B) if outcomes of A are also in B

Commutative Laws:
A ∪B = B ∪A and A ∩B = B ∩A

Associative Laws:

(A ∪B) ∪ C = A ∪ (B ∪ C) and (A ∩B) ∩ C = A ∩ (B ∩ C)

Distributive Laws:

(A ∪B) ∩ C = (A ∩ C) ∪ (B ∩ C) and (A ∩B) ∪ C = (A ∪ C) ∩ (B ∪ C)

DeMorgan’s Laws:

(A ∪B)c = Ac ∩Bc and (A ∩B)c = Ac ∪Bc

2.2 Equally Likely Outcomes

The probability of an event E is the likelihood of the occurrence of E denoted as P (E)

5



There are N outcomes and N(E) denotes the number of outcomes in event E. Then:

P (E) =
N(E)

N

Permutations have ordered outcomes. Number of permutations of k units selected
from a group of n units is denoted by Pk,n:

Pk,n =
n!

(n− k)!

Combinations have unordered outcomes. Number of combinations of k units selected

from a group of n units is denoted by
(
n
k

)
(
n
k

)
=

Pk,n

Pk,k
=

n!

k!(n− k)!

2.3 Axioms and Properties of Probability

For an experiment with sample space S, probability is a function that assigns a number
P (E) to an event so that the following axioms hold:

1. 0 ≤ P (E) ≤ 1

2. P (S) = 1

3. For any sequence of disjoint events E1, E2, ...

P

( ∞⋃
i=1

Ei

)
=

∞∑
i=1

P (Ei)

In addition, the following properties of probability are also useful:

P (A ∪B) = P (A) + P (B)− P (A ∩B)

P (A∪B∪C) = P (A)+P (B)+P (C)−P (A∩B)−P (A∩C)−P (B∩C)+P (A∩B∩C)

2.4 Conditional Probability

For any two events A and B with P (A) > 0, the conditional probability of B given A,
denoted by P (B|A), is

P (B|A) =
P (A ∩B)

P (A)

The following properties also apply:

P (A ∪ C|B) = P (A|B) + P (C|B)− P (A ∩ C|B)
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P (A ∩B ∩ C) = P (A) · P (B|A) · P (C|A ∩B)

Theorem. Law of Total Probability is a formula for computing the probability of an
event B when B arises in connection with a partition of the sample space, such that if
A1, ..., Ak constitute a partition of the sample space,

P (B) = P (A1)P (B|A1) + ...+ P (Ak)P (B|Ak)

Theorem. Bayes Theorem is used in the same context as the law of total probability.

P (A|B) =
P (A)P (B|A)

P (A)P (B|A) + P (Ac)P (B|Ac)

2.5 Independent Events

Events A and B are independent if knowledge that A occurred does not change the
probability of B occurring. In that case,

• P (A ∩B) = P (A)P (B)

• P (B|A) = P (B)

• P (A|B) + P (A)

Some properties include:

• If A and B are independent, so are A and Bc

• S and ∅ are independent of every other event

• Disjoint events are not independent unless the probability of one of them is 0

2.5.1 Mutual Independence

E1, ..., En are mutually independent if for every subset Ei1 , ..., Eik , k ≤ n,

P (Ei1 ∩ ... ∩ Eik) = P (Ei1)...P (Eik)
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3 Chapter 3: Random Variables and Their Distributions

3.1 Random variables

A random variable is a function that associates a number with each outcome of the
sample space of a random experiment.

The probability distribution of a random variable specifies how the total probability is
distributed.

3.1.1 Cumulative Distributive Function

Cumulative Distribution Function of a random variable X is a function

F (x) = P (X ≤ x)

CDF has the following properties:

• F (x) is a non-decreasing function

• F (−∞) = 0 and F (∞) = 1

• If a ≤ b, then P (≤ X ≤ b) = F (b)− F (a)

The probability density function (PDF) of a continuous random variable X is a nonneg-
ative function f such that

P (a < x < b) =

∫ b

a
f(x) dx

The PDF can also be obtained by the CDF, where

f(x) = F ′(x) =
d

dx
F (x)

3.2 Parameters of Probability Distributions

3.2.1 Expected Value, Variance, and Standard Deviations

Th expected value for a continuous random variable X with PDF f(x) is:

E(X) = µX =

∫ ∞

−∞
xf(x) dx

If X is continuous with PDF fX(x), the expected value of Y = h(x) is:

E(h(X)) =

∫ ∞

−∞
h(x)fX(x)
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Note: If Y = aX + b, then E(Y ) = aE(X)+ b. The variance σ2
X or Var(X), of a random

variable X is
σ2
X = E[(X − µX)2] = E(X2)− E(X)2

The Standard Deviation of X is the positive square root of the variance such that σX =√
σ2
X

3.2.2 Population Percentiles

Let X be a continuous random variable with CDF F and let α be a number between 0
and 1. The 100(1− α)-th percentile of X is xa such that

F (xa) = P (X ≤ xa) = 1− xa

3.3 Model for Discrete Random Variables

3.3.1 Bernoulli Distribution

A Bernoulli trial is an experiment whose outcome is either a success or a failure, where
1 stands for success and 0 stands for failure. This is denoted by X ∼ Bern(p).

3.3.2 Binomial Distribution

A binomial experiment is when n Bernoulli experiments, each having probability of suc-
cess p, are performed independently.

The binomial random variable Y is the number of successes in the n Bernoulli trials,
denoted as Y ∼ Bin(n, p), where:

p(y) = P (Y = y) =

(
n

y

)
py(1− p)n−y

For binomial distribution, the expected value and variance are calculated as

E(Y ) = np σ2
Y = np(1− p)

R command for computing PMF and CDF is dbinom(y, n, p) and pbinom(y, n, p)

3.3.3 Hypergeometric Distribution

Suppose a population consists of M1 objects labeled 1 and M2 objects labeled 0, and
that a sample of size n is selected at random without replacement.

The hypergeometric random variable X is the number of objects labeled 1 in the sample,
denoted as X ∼ Hyp(M1,M2, n), where:

p(x) = P (X = x) =

(
M1

x

)(
M2

n−x

)(
M1+M2

n

)
9



In this case, the sample space of X :

Sx = {max(0, n−M2), ...,min(n,M1)}

When N = M1 +M2, the expected value and the variance is

E(X) =
nM1

N
σ2
X =

nM1

N

(
1− M1

N

)(
N − n

N − 1

)
Note: For large population size N , the difference between sampling with and without
replacement is very small.

R command for computing PMF and CDF is dhyper(x,M1,M2, n) and phyper(x,M1,M2, n)

3.3.4 Geometric Distribution

In a geometric experiment, individual Bernoulli trials with probability of success p are
performed until the first success occurs.

The geometric random variable X is the number of trials up to and including the first
success, denoted as X ∼ Geo(p), where

p(x) = P (X = x) = (1− p)x−1p

F (x) = P (X ≤ x) = 1− (1− p)x

The expected value and variance would be:

E(x) =
1

p
σ2
X =

1− p

p2

3.3.5 Negative Binomial Distribution

In a negative binomial experiment, independent Bernoulli trials, each with probability of
success p, are performed until the rth success occurs.

The negative binomial random variable Y is the total number of trials up to and including
the rth success, denoted as Y ∼ NB(r, p), where:

p(y) = P (Y = y) =

(
y − 1

r − 1

)
pr(1− p)y−r

The expected value and variance are

E(Y ) =
r

p
σ2
Y =

r(1− p)

p2

R command for computing PMF and CDF is dnbinom(y − r, r, p) and pnbinom(y −
r, r, p)
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3.3.6 Poisson Distribution

The Poisson distribution is used to model the probability that a number of events
occur in an interval of time or space.

The poisson random variable X denotes the number of events that occurred, denoted by
X ∼ Poisson(λ), where

p(x) = P (X = x) =
e−λλx

x!

The expected value and variance are

E(X) = λ σ2
X = λ

R command for computing PMF and CDF is dpois(x, λ) and ppois(x, λ)
We can also find a sample of n Poissoon random variables using rpois(n, λ)

3.4 Models for Continuous Random Variables

3.4.1 Exponential Distribution

The exponential distribution is often used to model lifetimes of equipment or waiting
times until events are over, denoted as X ∼ Exp(λ).

The PDF is

f(x) =

{
λe−λx, 0 ≤ x ≤ 1

0, otherwise

Therefore, the CDF is
F (x) = 1− e−λx

The expected value and variance are

E(X) =
1

λ
σ2
X =

1

λ2

The memoryless property of exponential random variable X :

P (X > s+ t|X > s) = P (X > t)

3.4.2 Normal Distribution

ϕ(z) =
1√
2π

e−
z2

2 and Φ(z) =

∫ z

−∞
ϕ(y)dy

A random variable X has a normal distribution with parameters µ and σ2 is denoted as
X ∼ N(µ, σ2):

f(x) =
1

σ
· ϕ
(
x− µ

σ

)
=

1√
2πσ

exp

(
−(x− µ)2

2σ

)
11



F (x) = Φ

(
x− µ

σ

)
The mean and variance is therefore:

E(X) = µ V ar(X) = σ2

Suppose X ∼ N(µ, σ2). Then a+ bX ∼ N(a+ bµ, b2σ2) has

E(a+ bX) = a+ bE(X) = a+ bµ V ar(a+ bX) = b2V ar(X) = b2σ2

R command for computing

• the PDF and CDF is dnorm(x, µ, σ) and pnorm(x, µ, σ)

• the s100th percentile is qnorm(s, µ, σ)

• a random sample of size n is rnorm(n, µ, σ)

Q-Q Plots plot the sample percentiles against the percentiles from the normal distribu-
tion.
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4 Chapter 4: Joint Probability Distributions

4.1 Describing Joint Variable Distributions

4.1.1 Joint and Marginal PMF

The joint probability mass function (joint PMF) or the jointly discrete random variables
X and Y is

p(x, y) = P (X = x, Y = y)

If the sample space of (X,Y ) is S = {(x1, y1), (x2, y2), ...}, then

p(xi, yi) ≥ 0 for all i and
∑

(xi,yi)∈S

p(xi, yi) = 1

P (a < X ≤ b, c < Y ≤ d) =
∑

i:a<xi≤b,c<yi≤d

p(xi, yi)

The distributions of the individual random variables are called marginal distributions
and can be found using joint PMF:

pX(x) =
∑
y∈SY

p(x, y) pY (y) =
∑
x∈SX

p(x, y)

4.1.2 Joint and Marginal PDFs

The joint probability distribution density function of the jointly continuous random vari-
ables X and Y is the non-negative function F (X,Y ) with the property that

P ((X,Y ) ∈ A) =

∫ ∫
A
f(x, y)dx dy

f(x, y) has to satisfy the condition that∫ ∞

−∞

∫ ∞

−∞
f(x, y) dx dy

Marginal PDF can be found using the joint PDF

fX(x) =

∫ ∞

−∞
f(x, y) dy fY (y) =

∫ ∞

−∞
f(x, y) dx

Example. Let (X,Y ) be jointly continuous random variables with the following joint
PDF. Verify it is a valid PDF and find P (X > Y )

f(x, y)

{
12
7 (x

2 + xy), 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

0, elsewhere
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∫ 1

0

∫ 1

0

12

7
(x2 + xy) dx dy =

12

7

∫ 1

0

(
x3

3
+

x2y

2

) ∣∣∣∣∣
1

0

dy =
12

7

(
1

3
y +

y2

4

) ∣∣∣∣∣
1

0

= 1

To find P (X > Y ), 0 ≤ Y < X ≤ 1 :∫ 1

0

∫ 1

y

12

7
(x2 + xy) dx dy =

∫ 1

0

∫ x

0

12

7
(x2 + xy) dy dx

=
12

7

∫ 1

0

[
x2y +

1

2
xy2
]y=x

y=0

dx =
12

7

∫ 1

0

3

2
x3 dx = 0.643

To find the marginal PDF of X :

fX(x) =

∫ ∞

−∞
f(x, y) dy =

∫ 1

0

12

7
(x2 + xy) dy =

12

7

(
x2 +

1

2
x

)
4.2 Conditional Distributions: PMF and PDF

For jointly discrete random variables X and Y , the conditional PMF of Y given X = x
is

pY |X=x(y) = P (Y = y|X = x) =
p(x, y)

pX(x)

Note:
pY (y) =

∑
x∈Sx

p(x, y) =
∑
x∈Sx

py|X=x(y) · pX(x)

For jointly continuous random variables X and Y , the conditional PDF of Y given X =
x is

fY |X=x(y) =
f(x, y)

fX(x)

Note:
fY (y) =

∫ ∞

−∞
fY |X=x(y)fX(x) dx

4.3 Independent Random Variables

Two random variables are independent if

P (X ∈ A, Y ∈ B) = P (X ∈ A)P (Y ∈ B)

This could be expanded to discrete and continuous cases, where X and Y are inde-
pendent only if

p(x, y) = pX(x) · pY (y) f(x, y) = fX(x) · fY (y)

Theorem. If X and Y are jointly discrete, then X and Y are independent if and only
if (This also holds for jointly continuous random variables PDF):

pY |X=x(y) = pY (y) pX|Y=y(x) = pX(x)

Theorem. Let X and Y be independent. Then

14



• E(Y |X = x) = E(Y ) does not depend on the value of x.

• g(X) and h(Y ) are independent

• E[g(X)h(Y )] = E[g(X)]E[h(Y )]

If X1, ..., Xn are independent and identically distributed, or iid, if they are independent
and have the same distribution.

4.4 Expected Value of Functions of Random Variables

We can model the expected value as following:

E[h(x, y)] =

∫ ∞

∞

∫ ∞

∞
h(x, y)f(x, y) dx dy

Corollary. If X1, ..., Xn have the same mean µ = E(Xi), then

E

(
n∑

i=1

Xi

)
= nµ E(X̄) = E

(
1

n

n∑
i=1

Xi

)
= µ

Corollary. Suppose X1, ..., Xn are iid Bern(p). Then E(p̂) = p, where p̂ is the sample
proportion of successes (number of successes in X1, ..., Xn divided by n) .

4.5 Covariance

Var(X + Y ) =Var(X)+Var(Y ) only if X and Y are independent.

When random variables X and Y are dependent, computing Var(X +Y ) involves the
covariance.

Cov(X,Y ) = σX,Y = E[(X − µX)(Y − µY )] = E(XY )− µXµY

If Cov(X,Y ) > 0, then greater values of X mainly correspond to greater values of Y .
If Cov(X,Y ) < 0, then greater values of X mainly correspond to lesser values of Y .

Properties

• Cov(X,Y ) =Cov(Y,X)

• Cov(X,X)=Var(X)

• If X and Y are independent, then Cov(X,Y ) = 0

• Cov(aX + b, cY + d) = acCov(X,Y ) for any real numbers a, b, c, and d.

15



4.5.1 Variance of Sums and Random Variables

Let σ2
1 and σ2

2 be the variances of X1 and X2, respectively.

• If X1 and X2 and independent,

V ar(X1 +X2) = σ2
1 + σ2

2 V ar(X1 −X2) = σ2
1 + σ2

2

• If X1 and X2 are dependent.

V ar(X1+X2) = σ2
1+σ2

2+2Cov(X1, X2) V ar(X1−X2) = σ2
1+σ2

2−2Cov(X1, X2)

• If X1, ..., Xn are random variables with variances σ2
1, ..., σ

2
n

V ar(a1X1 + ...+ anXn) = a21σ
2
1 + ...+ a2nσ

2
n +

∑
i

∑
j ̸=i

aiajCov(Xi, Yi)

Corollary. Let X1, ..., Xn be iid with common variance σ2. Then

V ar

(
n∑

i=1

Xi

)
= nσ2 V ar(X̄) = V ar

(
1

n

n∑
i=1

Xi

)
=

σ2

n

Corollary. Suppose X1, ..., Xn are iid Bern(p). Then

V ar(p̂) =
1(11− p)

n

4.6 Quantifying Dependence

4.6.1 Pearson’s Correlation Coefficient

Two random variables X and Y are positively dependent if larger values of X are as-
sociated with larger values of Y and are negatively dependent if larger values of X are
associated with smaller values of Y .

However, covariance is not scale-free as it depends on the units. The correlation coefficient
of X and Y solves this problem.

ρX,Y = Corr(X,Y ) =
Cov(X,Y )

σXσY

Properties

• For constants a, b, c, and d

Corr(aX + b, cY + d) = sign(ac)× Corr(X,Y )

16



• −1 ≤ Corr(X, Y) ≤ 1

• If X and Y are independent, Corr(X,Y ) = 0

• Corr(X,Y ) = ±1 iff Y = aX+b for constants a ̸= 0 and b. This is thus a measure
of linear dependence.

Example. Let X1, X2 be iid N(0, 1) and let Y = 4X1 +X2. Find Cov(X1, Y )

Cov(X1, Y ) = E(X1Y )− E(X1)E(Y ) = E(X1Y )

= E[X1(4X1 +X2)] = 4E(X2
1 ) + E(X1X2) = 4E(X2

1 )

= 4(V ar(X1) + E(X1)
2) = 4

Note: Corr(X,Y ) = 0 does not mean X and Y are independent.

4.6.2 Sample Covariance and Correlation

If (X1, Y1), ..., (Xn, Yn) are samples from bivariate distribution of (X,Y ), the sample covariance
and the sample correlation coefficient are

SX,Y =
1

n− 1

n∑
i=1

(Xi − X̄)(Yi − Ȳ ) r = rX,Y =
SX,Y

SXSY
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5 Chapter 5: Approximation Results

5.1 Law of Large Numbers

The Law of Large Numbers Let X1, ..., Xn bee iid and let g be a function such that −∞ <
E[g(X1)] < ∞. =. Then for any ϵ > 0,

P

(∣∣∣∣∣ 1n
n∑

i=1

g(Xi)− E[g(X1)]

∣∣∣∣∣ > ϵ

)
→ 0 as n → ∞

This means that 1
n

∑n
i=1 g(Xi) converges in probability to E[g(X1)]]. If −∞ < E(X1) <

∞, then X̄ converges in probability to E(X1).

We call X̄ a consistent estimator of E(X1). Since p̂ is also a sample mean, we have p̂
converges in probability to p.

Limitations of LLN:

• as the sample size increases, sample averages approximate the population mean
E(X) more closely

• LLN provides no guidance regarding the quality of the estimation.

5.2 Convolutions

The convolution of two independent independent random variables refers to the dis-
tribution of their sum.

For example, let X and Y be independent random variables.

• If X ∼ Bin(n1, p) and Y ∼ Bin(n2, p), then X + Y ∼ Bin(n1 + n2, p)

• If X ∼ Poisson(λ1) and Y ∼ Poisson(λ2), then X + Y ∼ Poisson(λ1 + λ2)

• If X ∼ N(µ1, σ
2
1) and Y ∼ N(µ2, σ

2
2), then X + Y ∼ N(µ1 + µ2, σ

2
1 + σ2

2)

Corollary. Let X1, ..., Xn be independent random variables with Xi ∼ N(µi, σ
2
i ) and

let Y = a1X2 + ...+ anYn for constants then a1, ..., an. Then

Y = N(µY , σ
2
Y ), where µY = a1µ1 + ...+ anµn and σ2

Y = a21σ
2
1 + ...+ a2nσ

2
n

Corollary. Let X1, ..., Xn be iid N(µ, σ2) and let X̄ = 1
nX1 + ... + 1

nXn be the sample
mean.

X̄ ∼ N(µX̄ , σ2
X̄) = N

(
µ,

σ2

n

)
Example. Suppose we want to estimate the mean of a normal population whose vari-
ance is known to be 4. What sample size should be used to ensure that X̄ lies within
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0.5 units of the population mean with probability 0.9?

P (−0.5 < X̄ − µ < 0.5) = 0.9, X̄ ∼ N(µ,
σ2

n
), so standard deviation is

σ√
n

= P

(
− 0.5

σ/
√
n
<

X̄ − µ

σ/
√
n

<
0.5

σ/
√
n

)
= P

(
− 0.5

σ/
√
n
< z <

0.5

σ/
√
n

)
where z ∼ N(0, 1)

5.3 Central Limit Theorem (CLT)

Central Limit Theorem (CLT): Let X1, ..., Xn be iid with finite mean µ and finite variance
σ2. Then for large enough n,

• X̄ has approximately a normal distribution with mean µ and variance σ2

n .

X̄ ∼̇N

(
µ,

σ2

n

)

• T = X1 + ... + Xn has approximately a normal distribution with mean nµ and
variance nσ2.

T = X1 + ...+Xn∼̇N(nµ, nσ2)

DeMoivre-Laplace Theorem: If T ∼ Bin(n, p), then for large enough n,

T ∼̇N(np, np(1− p))

Continuity Correction: Let T ∼ Bin(n, p) and let Y ∼ N(np, np(1− p))

P (T ≤ k) ≈ P (Y ≤ k + 0.5) P (T = k) ≈ P (k − 0.5 < Y < k + 0.5)
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6 Chapter 6: Estimation

The goal of estimation is to estimate unknown population parameters.

Point estimation estimates an unknown parameter with a single value.

Notation:

• θ is the unknown population of interest.

• X1, ..., Xn is the sample before values or data.

• x1, ..., xn are the observed sample values or data.

• θ̂ is a quantity used to estimate θ.

• θ̂(X1, ..., Xn) is called an estimator and are used for random variables.

• θ̂(x1, ..., xn) is called an estimate for fixed values.

An estimator θ̂ of θ s unbiased is unbiased for θ if

Eθ(θ̂) = θ

The bias of θ̂ is
bias(θ̂) = Eθ(θ̂)− θ

The standard error of an estimator θ̂ is

σθ̂ =

√
V arθ(θ̂) =

√
V ar(θ)

It is important to note that by the central limit theorem, Var(X̄)=σ2

n .

The estimated standard error is denoted by Sθ̂.

6.1 Mean Squared Error

The men squared error (MSE) of an estimator θ̂ for θ is

MSE(θ̂) = Eθ[(θ̂ − θ)2] = V arθ(θ̂) + [bias(θ̂)]2

For unbiased estimators, the preferred estimator is the one with the smallest variance.

6.2 Models of Moments Estimation

Method of moments estimation is a model based estimation technique, where we as-
sume the population follows a known distribution.
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The kth theoretical moment:
µk = E(Xk)

The kth sample moment:

µ̂k =
1

n

n∑
i=1

Xk
i

6.3 Maximum Likelihood Estimation

Maximum likelihood estimation is a model based estimatioon technique that maximizes
the probability of the observed data.

Suppose X1, ..., Xn are iid random variables with PDF f(xi|θ) or PMF p(Xi|θ). The
likelihood function is

lik(θ) =
n∏

i=1

f(xi|θ) or (θ) =
n∏

i=1

p(xi|θ)

The value of θ that maximizes lik(θ) is the maximum likelihood estimator (MLE) θ̂.
Thus:

log[lik(θ)] = log

[
n∏

i=1

f(xi|θ)

]
=

n∑
i=1

log[f(xi|θ)]
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7 Chapter 7: Introduction to Confidence Intervals

We can use the sample mean X̄ as a point estimate for the population mean µ. By the
LLN, X̄ approximates more accurately as the sample size increases. CLT allows us to
assess the probability that X̄ will be within a certain distance from µ. However, using
only a point estimate is not as informative as we want it to be.

Confidence Interval is an interval for which we can assert, with a given degree of confi-
dence or certainty, that it includes the true value of the parameter being estimated.

7.1 Z Confidence Intervals

Confidence intervals that use percentiles from the standard normal distribution.

za = 100(1− α)-th percentile

Let X1, ..., Xn be iid random variables with parameter θ. By CLT, many estimators θ̂
of θ will be approximately normally distributed.

This results in a 95% confidence interval for θ:

θ̂ − 1.96Sθ̂ ≤ θ ≤ θ̂ + 1.96Sθ̂

The general (1− α)100% confidence interval for θ is

θ̂ − zα/2Sθ̂ ≤ θ ≤ θ̂ + zα/2Sθ̂

7.2 T Confidence Intervals

T Confidence intervals are intervals that use percentiles from the T distribution. Tv

is a random variable from the T distribution with v degrees of freedom (df ). As the
degrees of freedom increases, the T density tends toward the standard normal density.

In R,

• dt(x, v) gives the PDF of Tv for x.

• pt(x, v) gives the CDF of Tv for x.

• qt(s, v) gives the s100 percentile of Tv.

• nt(n, v) generates a random sample of n TV random variables.

Many estimators of θ̂ of θ satisfy
θ̂ − θ

Sθ̂

∼ Tv

This gives a (1− α)100% confidence interval for θ

(θ̂ − tv,α/2Sθ̂, θ̂ + tv,α/2Sθ̂)
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7.3 Confidence Intervals for Proportions

p̂− p√
p̂(1−p̂)

n

∼̇N(0, 1)

Therefore,

1−α = P

−zα/2 ≤
p̂− p√
p̂(1−p̂)

n

≤ zα/2

 = P

(
p̂− zα/2

√
p̂(1− p̂)

n
≤ p ≤ p̂+ zα/2

√
p̂(1− p̂)

n

)

The (1− α)100% confidence interval for p is(
p̂± zα/2

√
p̂(1− p̂)

n

)
The confidence interval works well as long as

np̂ ≥ 8 and n(1− p̂) ≥ 8 Success and failure both greater than 8.

The precision in the estimation of p is quantified by the margin of error or the length of
the confidence interval.

MOE = zα/2

√
p̂(1− p̂)

n

To make the confidence interval shorter, we either have to decrease confidence level
or increase sample size. Therefore, for desired length of confidence of interval L, we
choose n so that

n ≥
4z2α/2p̂pr(1− p̂pr)

L2

where p̂pr a preliminary estimate. We use 0.5 if we don’t have any estimate.

7.4 Confidence Interval for the Mean

Let X1, ..., Xn be a simple random sample from a population with mean µ and vari-
ance σ2.

7.4.1 Z Confidence Interval for the Mean

If the population variance σ2 is known, then by the CLT,

X̄ − µ

σ/
√
n
∼̇N(0, 1)

A (1− α)100% confidence interval for µ is therefore: (We have to know σ2!!)(
X̄ − zα/2

σ√
n
, X̄ + zα/2

σ√
n

)
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7.4.2 T Confidence Interval for the Mean

If we make the additional assumption that X1, ..., Xn are iid N(µ, σ2), then

X̄ − µ

S/
√
n

∼ Tn−1

A (1− α)100% confidence interval for µ is(
X̄ − tn−1,α/2

S√
n
, X̄ + tn−1,α/2

S√
n

)
Note that if the population is normal, this confidence interval holds for all n and we
can use a Q-Q plot to check it. If the population is not normal, this confidence interval
will still work well if n ≥ 30. In R, we get tn−1,α/2 using qt(1-α/2,n-1).

7.4.3 Precision

For means, the margin of error is

MOE = zα/2
σ√
n
= tn−1,α/2

S√
n

To find a desired sample size, we have

n ≥
(
2zα/2

Spr

L

)2

7.5 Confidence Intervals for the Variance

Suppose we want a confidence interval for the true variance σ2. Then if the the popu-
lation has a normal distribution

(n− 1)S2

σ2
∼ χ2

n−1

7.5.1 The χ2 distribution

X ∼ χ2
v has the distribution with v degrees of freedom

A (1− α)100% confidence interval for σ2 is

(n− 1)S2

χ2
n−1,α/2

< σ2 <
(n− 1)S2

χ2
n−1,1−α/2

Percentiles for the χ2 distribution can be found in R with qchisq(p, v) gives χv,1−p.
This calculation can thus be used to calculate the confidence interval for standard
deviations.
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8 Chapter 8 Introduction to Hypothesis Testing

Hypothesis tests allow us to assess evidence provided by the data in favor of some
claim about a population parameter. Often, we want to decide if the observed value
of a statistic is consistent with some hypothesized value of a parameter.

A statistical hypothesis involved two opposing hypothesis about population parame-
ter.

• The null hypothesis H0 is a statement about ”no effect” and it is the thing we are
trying to disprove.

• The alternative hypothesis Ha is a statement about an effect that we are trying to
prove.

• Favor is given to the null hypothesis H0. Assume it is true and prove otherwise.

A hypothesis test has two possible conclusions. We either reject H0 and decide Ha is
true, or fail to reject H0 and claim that either hypothesis could be true.

A Type I error occurs when we reject H0 when H0 is true while a Type II error occurs
when we fail to reject H0 when H0 is false.

We cannot prevent Type I and Type II errors from happening, but we can control the
possibilities that they occur.

• α describes the possibility of Type I error.

• β describes the probability of a Type II error

As α increases, β decreases. It is easiest to control α and we will call α the level of
significance of a hypothesis test.

Example. Consider a criminal trial:

• H0: Defendant is innocent

• Ha: Defendant is guilty

• Reject H0: Find the defendant guilty

• Do not reject H0: Find the defendant not guilty (NOT innocent)

• Type I Error: Find an innocent person guilty

• Type II Error: Find a guilty person not guilty
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8.1 Hypothesis Testing

Our hypothesis tests are performed with level of significance α, with common value
0.05.

Procedure:

1. State the Hypotheses (H0, Ha)

2. Compute a test statistic based on an estimator of the parameter

3. Reach conclusion that rejects or does not reject H0 using either rejection rule or
p-value

4. State your conclusion in the context of the problem

8.2 Hypothesis Tests for Proportions

Let X ∼ Bin(n, p) and let p̂ = X
n be the sample proportion. There are three scenarios

for stating the hypotheses, given p0 is the hypothesized/benchmark value:

H0 : p = p0 H0 : p = p0 H0 : p = p0

Ha : p > p0 Ha : p < p0 H0 : p ̸= p0

The test statistic is computed based on the condition that np0 ≥ 5 and n(1− p0) ≥ 5:

ZH0 =
p̂− p0√
p0(1−p0)

n

If H0 is true, then ZH0 ∼̇N(0, 1). Therefore, we want to determine if the observed
value of ZH0 is unusual (by α) for a N(0, 1) variable and reject H0 if it is.

Ha : p > p0 Ha : p < p0 H0 : p ̸= p0

Reject if ZH0 ≥ Zα Reject if ZH0 ≤ Zα Reject if |ZH0 | ≥ Zα

Meanwhile, the p-value conveys the strength of the evidence against H0 and is the
probability of observing what was observed if H0 is true. Reject H0 if p-value ≤ α

Ha : p > p0 Ha : p < p0 H0 : p ̸= p0

p-value = P (Z ≥ ZH0) p-value = P (Z ≤ ZH0) p-value = 2P (Z ≥ |ZH0 |)

8.3 Hypothesis Tests for Means

Let X1, ..., Xn be a simple random sample from a population and let X̄ and S2 be the
sample mean and sample variance. For hypothesized mean µ0:

H0 : µ = µ0 H0 : µ = µ0 H0 : µ = µ0

Ha : µ > µ0 Ha : µ < µ0 H0 : µ ̸= µ0
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The test statistic is computed based on the condition that population is normal or
n ≥ 30.

TH0 =
X̄ − µ0

S/
√
n

If H0 is true, then TH0 ∼ Tn−1. We want t determine if the observed value of TH0 is
unusual for a Tn−1 random variable. Reject H0 if TH0 is unusual.

Ha : µ > µ0 Ha : µ < µ0 H0 : µ ̸= µ0

Reject if TH0 ≥ Tn−1,α Reject if TH0 ≤ −Tn−1,α Reject if |TH0 | ≥ Tn−1,α/2

If p-value ≤ α, H0 should also be rejected.

Ha : µ > µ0 Ha : µ < µ0 H0 : µ ̸= µ0

p-value = P (Tn−1 ≥ TH0) p-value = P (Tn−1 ≤ TH0) p-value = 2P (Tn−1 ≤ |TH0 |)

To test a set of values x in R given a test mean, we use

t.test(x, mu = 25, alternative = "two-sided")
where mu is the hypothesized value µ0 and ”two.sided” can be replaced with ”greater”
or ”this”

8.4 Hypothesis Tests for Variances

Let X1, ..., Xn be iid normal with variance σ2. Let S2 be the sample variance.

H0 : σ
2 = σ2

0 H0 : σ
2 = σ2

0 H0 : σ
2 = σ2

0

Ha : σ2 > σ2
0 σ2 < σ2

0 H0 : σ
2 ̸= σ2

0

The test statistic is computed based on the condition that the population is normal:

χ2
H0

=
(n− 1)S2

σ2
0

8.5 Confidence Intervals and Hypothesis Tests

Suppose we want to test a hypotheses with significance level α. The confidence inter-
val contains plausible values of µ. If µ0 is in the confidence interval, we do not reject
H0. If µ0 is not in the confidence interval, we reject H0.
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9 Chapter 9 Comparing Two Populations

9.1 Comparing Two Means

Let X1, ..., Xn1 be a simple random sample from a population with mean µ1 and vari-
ance σ2

1 and X1, ..., Xn2 be a simple random random sample from a population with
mean µ2 and variance σ2

2 .

9.2 Case 1: Equal Variance

Assuming σ2
1 = σ2

2 = σ2, we can define a pooled estimator of common variance σ2 as

S2
p =

(n1 − 1)S2
1 + (n2 − 1)S2

2

n1 + n2 − 2

If both populations are normal, then

(X̄1 − X̄2)− (µ1 − µ2)√
S2
p

(
1
n1

+ 1
n2

) ∼ Tn1+n2−2

In practice, our inference will hold if the population are not normal but n ≥ 30 and
n2 ≥ 30 and if S2

1 and S2
2 are close enough such that

max{S2
1 , S

2
2}

min{S2
1 , S

2
2}

<


5 if n1, n2 ≈ 7

3 if n1, n2 ≈ 15

2 if n1, n2 ≈ 30

A (1− α)100th confidence interval for µ1 − µ2 is

(X̄1 − X̄2)± tn1+n2−2,α/2

√
S2
p

(
1

n1
+

1

n2

)
If we want a hypothesis test for µ1 − µ2, we first state the hypotheses

H0 : µ1 − µ2 = ∆0 H0 : µ1 − µ2 = ∆0 H0 : µ1 − µ2 = ∆0

Ha : µ1 − µ2 > ∆0 Ha : µ1 − µ2 < ∆0 Ha : µ1 − µ2 ̸= ∆0

TEV
H0

=
(X̄1 − X̄2)−∆0√

S2
p

(
1
n1

+ 1
n2

)
If H0 is true, TEV

H0
∼ Tn1+n2−2 and we can find rejection rules and p-values with the

same method.
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9.3 Case 2: Unequal Variances

We allow σ2
1 ̸= σ2

2 in this case. If both populations are normal, then

(X̄1 − X̄2)− (µ1 − µ2)√
S2
1

n1
+

S2
2

n2

∼̇ Tv where v =

⌊ (
S2
1

n1
+

S2
2

n2

)2
(S2

1/n1)2

n1−1 +
(S2

2/n2)2

n2−1

⌋

This approximation works well if the populations are not normal but n1 ≥ 30 and
n2 ≥ 30.

The (1− α)100th confidence interval for µ1 − µ2 is

(X̄1 − X̄2)± tv,α/2

√
S2
1

n1
+

S2
2

n2

In this case, the test statistic is

TSS
H0

=
(X̄1 − X̄2)−∆0√

S2
1

n1
+

S2
2

n2

In R, for data x1 and x2, the equal variance test could be tested as

t.test(x1, x2, mu = 2, alternative= "less", var.equal=T, conf.level=0.99)

9.4 Paired Data

Paired data arise from an alternative sampling design used for the comparison of two
means. Each data point in the first sample is matched with a unique data point in the
second sample. We thus analyze the differences between the observations for each
pair of data, D.

In this case, µD is the population mean difference, D̄ is the sample mean difference,
SD is the sample standard deviation of the sample, and n is the number of pairs.

Assuming the differences are normally distributed or n ≥ 30, then

D̄ − µD

SD/
√
n

∼ Tn−1

The (1− α)100th confidence interval for µD = µ1 − µ2 is

D̄ ± tn−1,α/2
SD√
n

The test statistic of a hypothesis test is thus given by

TH0 =
D̄ −∆0

SD/
√
n

The paired value test in R is given by the paired = T option.

t.test(post, pre, mu = 0, paired = T, alternative = "greater")
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10 Chapter 10: Analysis of Variance (ANOVA)

This answers the core question of how to compare means across more than two pop-
ulations.

ANOVA uses a single hypothesis test to check whether that means across several pop-
ulations are equal.

H0 : µ1 = ... = µk

Ha : at least one mean is different

If H0 is true, the variability between the sample means should be small. The vari-
ability between the sample means is called the variability between groups. In order to
determine if the variability between groups is large or small, we need to compare it to
the variability within each group. This is why this method is called Analysis of Variance.

When H0 : µ1 = µ2 = µ3 is false, the between groups variability will be much greater
than the within groups variability

10.1 The Details

Suppose we have independent random samples from k populations.

X11, X12, ..., X1n1

X21, X22, ..., X2n2

...

Xk1, Xk2, ..., Xknk

• X̄i is the sample mean for the ith random sample

• S2
i is the sample variance for the ith random sample.

• X̄ is the overall sample mean.

• N = n1 + ...+ nk is the overall sample size

10.1.1 Variability between Groups

SSTr =
k∑

i=1

ni(X̄i − X̄)2

MSTr =
SSTr
k − 1

SSTr is called the treatment sum of squares

MSTr is called the mean squares for treatment
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10.1.2 Variability within groups

SSE =
k∑

i=1

ni∑
j=1

(Xij − X̄i)
2 =

k∑
i=1

(ni − 1)S2
i

MSE =
SSE

N − k

SSE is called the error sum of squares.

MSE is called the mean squares for the error

10.1.3 Test Statistic

The test statistic FH0 is the ratio of the MSTr and MSE:

FH0 =
MSTr
MSE

If H0 is true, FH0 has an F distribution, aa positive distribution skewed to the right. This
distribution is frequently used then the test statistic is a ratio, and it has two degrees
of freedom v1 and v2 where

v1 = DFSSTR = k − 1 and v2 = DFSSE = N − k

We reject H0 if FH0 ≥ Fk−1,N−k,α, where qf(1-α, v1, v2) gives Fv1,v2,α.

p-value = P (Fk−1,N−k > FH0). Therefore, P (Fv1,v2 < x) = ˇpf(x, v1, v2)

10.1.4 Summary

SST = SSTr + SSE DFSST = DFSSTr +DFSSE + 1

Assumptions

• The k samples are independent.

• The variances of the k populations are equal

• The k populations are normally distributed (or ni ≥ 30 for all i).

Suppose values represents all data and group represents the data’s category at that
index:

fit<-(aov(values ˜ as.factor(group))
anova(fit)
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11 Chapter 11: Simple Linear Regression

Simple linear regression allows us the investigate the relationship between two vari-
ables X and Y . We try to describe hw E(Y |X = X) varies as a function of x

11.1 Regression Model

The simple linear regression model is given by

Y = α1 + β1X + ε

The error variable ε has a N(0, σ2
ε) distribution and has Cov(X, ε) = 0. σ2

ε is the same
for all values of x.

Corollary. E(Y |X = x) = α1 + β1x

Corollary. The distribution of Y |X = x is N(α1 + β1, σ
2
ε)

11.2 The Method of Least Squares

We will use least squares to estimate the parameters of the linear regression model. We
let (X1, Y1), ..., (Xn, Yn) be a random bivariate sample from the population.

SSE =
n∑

i=1

(yi − ŷi)
2 =

n∑
i=1

(yi − (α̂1 + β̂1xi))
2

The vertical distances are the estimated errors and are called residuals.

ε = Yi − Ȳi

Minimizing the SSE provides the estimates:

β̂1 =
SX,Y

S2
X

and α̂1 = Ȳ − β̂1X̄

We caan use the SSE to estimate σ2
ε

S2
ε =

SSE
n− 2

In R, we can obtain the estimates of x and y as following:

model <- lm(y ˜ x)
model$coefficients
model$residuals
sum(model$residualsˆ2)/model$df.residual

Note the least squares estimates are also the maximum likelihood estimates of the
parameters.
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The estimated intercept, α1, is the estimated average value of Y when X = 0. This,
however, doesn’t provide meaning in most statistical context.

The estimated slope, β̂1, is the estimated change in the average of Y |X = x for a
one-unit increase in x.

11.3 Inference for beta

If Y |X = x has a normal distribution and Sβ̂1
is the estimated standdardd error of β̂1,

then
β̂1 − β1
Sβ̂1

∼ Tn−2

holds if Y |X = x is normal or n ≥ 30. A (1− α)100th confidence interval for β1 is

β̂1 ± tn−2,α/2Sβ̂1

In R, given model that has been calculated previously, we can get

confint(model, level=0.95)

The test statistic is given by

TH0 =
β̂1 − β1,0

Sβ̂1

We can also get the value in R with

summary(model)

11.4 Prediction

The estimated regression line is

Ŷ = α̂1 + β̂1x

We use this regression line to predict Y given X , denoted with µ̂Y |X(x). This value
represents the average value of Y for sub-population with X = x and an individual
value of Y when X = x. However, it is important to note that the errors and intervals
associated with the two cases are different.

11.4.1 Confidence Interval for an Average Response

A (1− α)100th confidence interval is

µ̂Y |X(x)± tn−2,α/2Sε

√
1

n
+

(x− X̄)2∑
(Xi − X̄)2
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11.4.2 Prediction Interval for an Individual Response

A (1− α)100th confidence interval is

µ̂Y |X(x)± tn−2,α/2Sε

√
1 +

1

n
+

(x− X̄)2∑
(Xi − X̄)2
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A Common Expressions in R Code

• dbinom(y, n, p): Binomial PMF

• pbinom(y, n, p): Binomial CDF

• dhyper(x,M1,M2, n): Hypergeometric PMF

• phyper(x,M1,M2, n): Hypergeometric CDF

• dnbinom(y − r, r, p): Negative binomial PMF

• pnbinom(y − r, r, p): Negative binomial CDF

• dpois(x, λ): Poisson PMF

• ppois(x, λ): Poisson CDF

• dnorm(x, µ, σ): Normal PDF

• pnorm(x, µ, σ): Normal PDF

• qnorm(s, µ, σ): Normal distribution sth percentile

• rnorm(n, µ, σ): Normal distribution random sample of size n

• dt(x, v): PDF of Tv

• pt(x, v): CDF of Tv

• qt(s, v): s100 percentile of Tv

• qchisq(p, v): Gives χ2 distribution’s p percentile

• qf(1-α, v1, v2): Gives Fv1,v2,α distribution’s percentile

• cov(x, y) calculates the covariance of data x and y

• cor(x, y) calculates the correlation of data x and y

• t.test(x, mu = µ0, alternative = "two-sided") gives hypothesis test
statistics, where x is the data, mu is the hypothesis test value µ, and alternative
is test method that could be two.sided, greater, or less based on Ha

• t.test(x1, x2, mu = 2, alternative= "less", var.equal=T, conf.level=0.99)
gives hypothesis test statistics for two data x1 and x2. The option var.equal=T
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states equal variance assumption, while conf.level gives confidence level
(1− α)

• t.test(post, pre, mu = 0, paired = T, alternative = "greater")
gives a paired value hypothesis test, established by the option paired = T
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