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Note: This set of notes does NOT contain everything being taught in class. In particular, I might
not include the full details of materials previously covered in Matrix Algebra and might only include
examples that help solidify more abstract concepts.
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Proof Techniques

Induction

Usually, induction proof concerns proving properties about numbers.

Example. Prove that

∀n ∈ N,
n∑
k=1

k =
n(n+ 1)

2
,

n∑
k=1

k2 =
n(n+ 1)(2n+ 1)

6

For
∑n
k=1 k = n(n+ 1)/2, denote Pn as the proposition n to prove.

First, We verify P1, where
∑1
k=1 k = 1, implying that P1 is true.

Then we verify Pn =⇒ Pn+1 (If Pn is true, then Pn+1 is true). Suppose Pn holds. Then for Pn+1,

n+1∑
k=1

k =
(n+ 1)(n+ 2)

2
=

n∑
k=1

k + (n+ 1) =
n(n+ 1)

2
+ (n+ 1) =

(n+ 1)(n+ 2)

2

∴ Pn+1 is true. Induction complete.

Proof by Contradiction/Contrapositive

To prove P =⇒ Q, we can either prove nonP =⇒ nonQ or suppose Q is false (is nonQ) and find
contradiction with P .

Example. Suppose that n ∈ N s.t. n2 is even. Prove that n is even.

Proof: Suppose n is not even. we can prove that n2 is not even.

Example. Let f : R→ R be a continuous function. Then, prove that if f2 = 1, then either f = 1 or
f = −1.

Proof: For the contradiction: suppose ∃ x0 ∈ R such that f(x) ̸= 1 and ∃ x1 ∈ R such that
f(x) ̸= −1. By the Intermediate value theorem, (IVT) all values between 1 and -1 are taken by f
due to its continuity. Thus, we can find a ∈ [x0, x1] such that f(a) = 0 =⇒ f(a2) = 0. There is a
contradiction, so f(x)2 = 1.

Double Inclusion and Distinction of Cases

Example. A,B,C ⊂ E. Prove A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

Proof: Let x ∈ A ∩ (B ∪ C). This means that x ∈ A and x ∈ (B ∪ C) (which is equivalent to
x ∈ B or x ∈ C). To prove ⊆, We have two cases:{

x ∈ A and x ∈ B ⇐⇒ x ∈ A ∩B ⊆ (A ∩B) ∪ (A ∩ C), x ∈ (A ∩B) ∪ (A ∩ C)
x ∈ A and x ∈ C ⇐⇒ x ∈ A ∩ C ⊆ (A ∩B) ∪ (A ∩ C), x ∈ (A ∩B) ∪ (A ∩ C)

Therefore, x ∈ (A ∩B) ∪ (A ∩ C). Then A ∩ (B ∩ C) ⊆ (A ∩B) ∪ (A ∩ C)

To prove the other way (⊇) let x ∈ (A ∩B) ∪ (A ∩ C), we have{
x ∈ A ∩B ⇐⇒ x ∈ A and x ∈ B =⇒ x ∈ A and x ∈ B ∪ C x ∈ A ∩ (B ∪ C)
Similarly, if x ∈ A ∩ C, then x ∈ A ∩ (B ∪ C)

Exercise: Prove A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)
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0 Linear Systems and Matrices

Example. A linear system could be: 
x+ 2y + 3z = 0

4x+ 5y + 6z = 0

7x+ 8y + 9z = 0

We want to arrange the corresponding system into upper triangular form by eliminating coefficients:1 2 3
4 5 6
7 8 9

→
1 2 3
0 3 6
0 6 12

→
1 2 3
0 3 6
0 0 0


We have 1 free variable, so we can set z = t ∈ R. y = −2t ;x = 4t− 3t = t. This can thus be written
as xy

z

 = t

 1
−2
1

 , t ∈ R

In this example, 1 free variable means that solutions can be ”generated” by exactly 1 vector.

Definition. Rank is defined as the number of rows in echelon row after it is reduced.

This simple example also demonstrates the rank-nullity theorem, where (not fully stated yet in class)

rankA+ dim(nullA) = n

The rows in the echelon form could be interpreted geometrically where each row is the equation of a

plane through 0⃗. For a 3D space (3 by 3 matrix) of rank 2, there are hence 2 planes that intersect
into a line.

If we consider the columns of the matrix which writes:14
7

x+

25
8

 y +
36
9

 z = c⃗1x+ c⃗2y + c⃗3z =

00
0


we can conclude that

The solution

 1
−2
1

⇐⇒ c⃗1 − 2c⃗2 + c⃗3 = 0⃗

The space generated by c⃗1, c⃗2, c⃗3 is the span of the vectors.

0.1 Matrices

Definition. An m× n matrix is a m× n grid of numbers (R or C)

Mm,n(R) is the space of m× n matrices

If A ∈Mm,n(R), denote

A = [ai,j ]1≤i≤m,1≤j≤n =


a1,1 a1,2 . . . a1,n

a2,1
. . . a2,n

...
. . .

...
am,1 . . . . . . am,n
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Definition. The pivot of a matrix is the first nonzero coefficient occurring in the row. In a row
echelon matrix (REM): ∀i ∈ [1,m− 1], the pivot in row i+1 occurs strictly after the pivot in row
i. Everything below the pivots should have coefficient 0.

Definition. A reduced row echelon matrix (RREM) matrix keeps the properties of REM. In
addition, its pivots are 1 and coefficients above pivots are 0.

We can associate linear systems in general with an augmented matrix:
a1,1x1 + a1,2x2 + ...+ a1,nxn = b1

...

am,1x1 + am,2x2 + ...+ 1m,nxn = bn

→
[
A = (ai,j) | b⃗

]
, where b⃗ ∈Mm,1(R) ≃ Rm

Definition. When b⃗ = 0, we say that the system is homogeneous. The kernel of A, ker(A), is the

solution set of the linear system only when b⃗ = 0

Definition. Two matrices A,B ∈ Mm,n(R) are row-equivalent if we can get B from A via a
sequence of elementary row operations.

Proposition. 2 linear systems with row equivalent matrices have the same solution set. In order
words, elementary row operations preserves kernel.

Therefore, to solve a linear system, we try to boil down to an echelon form with row operations to
solve.

Proposition. Let A ∈Mm,n(R).

1. A is row equivalent to a REM.

2. If A,B is row equivalent, then they have the same reduced row echelon form.

Proof: see other notes... I give up

Definition. The rank of A, rank(A), where A ∈ Mm,n(K) (K is either R or C) is the number of
nonzero rows in an echelon form of A.

Example.

rank

1 2 3
4 5 6
7 8 9

 = rank

1 2 3
0 1 2
0 0 0

 = 2

Remark in regards to column ranks. Everything we did so far could be done with columns, such as
column operations, column echelon form (lower triangular), and column rank. However, the problem
is that column operations change the solutions of a linear system.

Theorem. rank = column rank
Proof: : later (Think about it as an exercise)

We can also define column equivalence if we can get from matrix B to A with a series of elementary
column operations.

Definition. A,B ∈Mm,n(K) are equivalent if we can go from one to the other via row and column
operations.

Theorem. Suppose matrix A ∈ Mm,n(K). Then A has rank r ⇐⇒ A is equivalent to a matrix
B ∈Mm,n(K) of all zeroes, except the top left is an identity matrix of size Ir.

Proof: For =⇒ : First, we row reduce a matrix to rref(A). Then, column reduce rref (A) to
reduced column echelon form and we get the result.
For ⇐=, (to be proved later)
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0.2 Geometric Interpretations of Ranks

In rows, rank is the minimum number of equations to describe L. The kernel of A is the intersection
of the planes associated with each equation.

In columns, suppose the c⃗1, c⃗2, c⃗3 are the columns of A. span(c⃗1, c⃗2, c⃗3) is space generated by the
vectors. In other words, this is the smallest space through c⃗1, c⃗2, c⃗3. The column rank is thus the
dimensions of the span of the vectors. The rank nullity theorem is where n = rank(A)+ free
variables of L

Proof: Obvious from echelon form of A

Comment: dim ker(A) is equal to the number of free variables.

Example. For the linear system x + y + z = 0 (plane in R3), A =
[
1 1 1

]
. If we set y, z as free

variables such that y = t, z = s, thenxy
z

 = t

−11
0

+ s

−10
1

 ,∀t, s ∈ R

Thus in this case, number of free variables = 2 = dim plane = minimum number of vectors to
generate a plane.

1 Matrices (Again?...)

1.1 Basic Operations

Definition. Matrix addition for A,B ∈Mm,n(K) is defined as

A+B = [ai,j + bi,j ]1≤i≤m,1≤j≤n

Definition. Matrix dilation, or multiplication by scalar, is defined for λ ∈ K and A ∈ Mm,n(K)
where

λA =
[
λai,j

]
Definition. Matrix transpose for A ∈Mm,n(K) is the operation AT or At, where

(tA)i,j = Aj,i. So, A
t ∈Mm,n(K)

Definition. If A ∈Mm,n(K), we call A symmetric if AT = A, and A skew symmetric if AT = −A.

Exercise: Prove that A skew symmetric =⇒ Diagonal of A is made of 0.

1.2 Multiplication

Definition. Let A ∈Mm,n(K), B ∈Mn,p(K). AB is the matrix with

(AB)i,j =

n∑
k=1

ai,kbk,j ; i ∈ [1,m], j ∈ [1, p]
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a11 a12 . . . a1p

a21 a22 . . . a2p

...
...

. . .
...

an1 an2 . . . anp




A : n rows p columns

b11 b12 . . . b1q

b21 b22 . . . b2q

...
...

. . .
...

bp1 bp2 . . . bpq





B : p rows q columns

c11 c12 . . . c1q

c21 c22 . . . c2q

...
...

. . .
...

cn1 cn2 . . . cnq





a 2
1
×
b 12

a 2
2
×
b 22

a 2
p
×
b p2

+

+ . . .+

C = A×B : n rows q columns

Credit to https://texample.net/tikz/examples/matrix-multiplication/.

1.2.1 Properties

Matrix multiplication is associative, where (AB)C = A(BC). Matrix multiplication also dis-
tributes over addition, so that A(B + C) = AB +AC and (B + C)A = BA+ CA.

Example. Let A ∈Mm,n(R), B ∈Mn,p(R), C ∈Mp,q(R). Prove the associative property.

((AB)C)i,j =

p∑
k=1

(AB)i,kCk,j

=

p∑
k=1

n∑
l=1

(Ai,lBl,j)Ck,j =

p∑
k=1

n∑
l=1

Ai,j(Bl,kCk,j)

=

n∑
l=1

Al,k

(
p∑
k=1

Bl,kCk,j

)
= A(BC)i,j

Exercise: A,B ∈Mn(R). Prove that tr(AB) = tr(BA).

Proof:

tr(AB) =

n∑
i=1

(AB)i,i =

n∑
i=1

n∑
k=1

Ai,kBk,i =

n∑
k=1

n∑
i=1

Ak,iBi,k =

n∑
k=1

(BA)k,k = tr(BA)
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Let In be an identity matrix of size n× n. If A ∈Mm,n(K), then ImA = AIn = A.

Let λ ∈ K, and A,B be multipliable matrices. Then

λ(AB) = (λA)B = A(λB) = (AB)λ λA = (λIm)A

The puropse of this is that we can suppose L is a linear system with matrix A = (ai,j) ∈ Mm,n(K).
Then

L⇐⇒ Ax⃗ = b⃗, where x⃗ =

x1...
xn

 ∈ Kn, b⃗ =

 b1...
bm

 ∈ Km

1.2.2 Elementary Matrices

Definition. Denote (Ei,j)1≤i≤n,1≤j≤n ∈ Mn(R) as the canonical (standard) basis of Mm,n(K),
such that the matrix has 1 at the (i, j) spot and 0 everywhere else.

Let A ∈m,n (K). Then Ei,jA is a matrix with Ri = Rj(A)with 0 everywhere else. The operation
AEi,j is a m× n matrix with Cj = Ci(A) and 0 everywhere else.

Proof: (First part) (Ei,jA)p,q where p∈ [1,m], q ∈ [1, n].

(Ei,jA)p,q =

m∑
k=1

(Ei,j)p,kAk,q, where for (Ei,j)p,k,

{
1, p = i and k = j

0, otherwise

∴ Aj,q =

{
Aj,q, if p = i

0, otherwise

Exercise: Prove AEi,j as matrix with Cj = Ci(A)

In other words, for matrix A ∈Mm,n(R),

Ei,jA =


. . .
...

. . . Rj(A) . . .
0 . . . 0


Addendum to properties. In general, AB ̸= BA.

Theorem. Elementary Matrices

Left Multiplication by Elementary Matrix Row Operation

In + λEi,j Ri ← Ri + λRj
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1 0 . . . . . . . . . . . . 0

0
. . .

. . .
...

...
. . . 1

. . .
...

...
. . . λ

. . .
...

...
. . . 1

. . .
...

...
. . .

. . . 0
0 . . . . . . . . . . . . 0 1


Moreover, right multiplication by elementary matrix ⇐⇒ column operation

Proof: For In + λEi,j ⇐⇒ row operation Ri ← Ri + λRj . Let A ∈Mn,m(R):

(In + λEi,j)A = A+ λEi,j(A) = ...

1.2.3 Block Matrix Multiplication

Setting M ∈Mm,n(R),M ′ ∈Mn,p(R), we can decompose it so that

M =

[
A B

C D

]
M ′ =

[
A′ B′

C ′ D′

]

A =

A B

C C


test

0

0
0 0 0

A


Note: Summations can commonly be transformed with

n∑
k=r+1

ak =

n−r∑
k=1

ak+r

We can establish a relationship between rref(A) and the original matrix A, with

rref(A) = Ek . . . E2E1A

In particular, A and B are row equivalent iff ∃E1, . . . , Ek elementary matrices ∋ A = Ek...E1B.
Similarly, A and B are column equivalent iff ∃E′

1, ..., E
′
p elementary matrices ∋ A = BE′

1...E
′
p.

1.3 Inverse of Matrices (Square Only)

Definition. A ∈ Mn(K). A is left invertible if ∃B ∈ Mn(R) such that BA = In. A is right-
invertible if ∃C ∈ Mn(K) such that AC = In. A is invertible if it is right and left invertible and
B = C. In this case, denote B = C = A−1.
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We need this idea of left and right invertibility to solve for inverses of linear systems.

Proposition. If A ∈Mn(R) is both left and right invertible, with B being right inverse and C being
left inverse, then B = C.

Proof: Given BA = In and AC = In, then B = BIn = B(AC) = (BA)C = InC = C

Theorem. If we do not assume left and right invertibility, then A left invertible⇐⇒ A right invertible.

Proof: Done at end of section

Denote GLn(K) as the set of n × n invertible matrices. Then, A,B ∈ GLn(K) =⇒ AB ∈ GLn(K).
Morevoer, (AB)−1 = B−1A−1.

Uniqueness of Inverse: If A ∈ GLn(K) and has 2 inverses B,C, then B = C

Looking at the inverse of elementary matrices, we have

1.
(In + λEi,j)

−1 = In − λEi,j , ∃i ̸= j, λ ∈ K

2. 

1 0 . . . . . . . . . . . . 0

0
. . .

. . .
...

...
. . . 1

. . .
...

...
. . . λ

. . .
...

...
. . . 1

. . .
...

...
. . .

. . . 0
0 . . . . . . . . . . . . 0 1



−1

=



1 0 . . . . . . . . . . . . 0

0
. . .

. . .
...

...
. . . 1

. . .
...

...
. . . 1

λ

. . .
...

...
. . . 1

. . .
...

...
. . .

. . . 0
0 . . . . . . . . . . . . 0 1


3.

E−1
i⇔j = Ei⇔j involution; inverse = itself

To prove (1), we check that operation

(In − λEi,j)(In + λEi,j) = ...

Lemma. (Avatar of the dimennon theorem). Denote Jr = Jrm,n=

Jr =

[
Ir 0

0 0

]

Then Jr is equivalent to Jr′ iff r = r′.

Proof: ⇐=: r = r′ =⇒ Jr = Jr′

=⇒ Suppose Jr equivalent to Jr′ .

Proof. Without loss of generality, we can assume r ≤ r′.

Jr ∼ Jr′ ⇐⇒ PJrQ = Jr′
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Theorem. For A ∈Mm,n(K)

1. rank(A) = r ⇐⇒ A is equivalent to Jr

2. column rank(A) = rank(A)

3. rank(A) = rank(B)⇐⇒ A equivalent to B (matrix operations preserve rank)

Proof: For (1) ⇐=, If A ∼ Jr, then A = PJrQ. Moreover, if r′ = rank(A), we can row reduce +
column reduce where A = P ′Jr′Q

′ =⇒ Jr ∼ Jr′ =⇒ r = r′ = rank(A)

For (2), let r′ = col rk(A), r = rk(A). A = P ′Jr′Q
′, A = PJrQ =⇒ Jr′ ∼ Jr =⇒ r = r′

(3) is left as exercise

1.4 Invertibility vs Rank

Theorem. Let A ∈Mn(K). Then

A invertible ⇐⇒ Ax⃗ = 0⃗ has only solution x⃗ = 0⃗⇐⇒ rk(A) = n

Proof: 1→ 2 : If A invertible, then Ax⃗ = 0⃗ =⇒ x⃗ = A−10⃗ = 0⃗.

2 → 3: If only solution to Ax⃗ = 0 is 0⃗, then it means that rref(A) has all diagonal entries as pivots
=⇒ rank(A) = n

3→ 1: rank(A) = n =⇒ rref(A) . We have rref(A)= In = PA = AQ =⇒ P = Q = A−1

1.4.1 Finding inverse of matrix

How to find A−1 if A ∈ GLn(K)?

Convert
[
A In

]
→
[
rref(A) = In A−1

]
This can be explained as

Ek...E2E1A = rref(A) = In =⇒ BA = In =⇒ .....

Corollary. Invertible matrices are products of elementary matrices.

Final notes on equivalence of matrices: We saw that all invertible matrices are products of elementary
matrices. Moreover, elementary matrices are invertible. Thus, equivalent matrices can be defined for
A,B ∈Mm,nas

A ∼ B iff ∃ P ∈ GLm(K), ∃Q ∈ GLn(K) s.t. B = PAQ
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2 Vector Spaces (Finally)...

2.1 General Vector Space Theory

2.1.1 Motivation

In Rn, linear combinations of v⃗1, v⃗2, ..., v⃗k is a vector of the form

v⃗ = λ1v⃗1 + λ2v⃗2 + ...+ λkv⃗, λi ∈ R

Why are they special?

1. Calculating rank involves linear combinations of rows or columns.

2. Solutions of linear systems of the form Ax⃗ = 0⃗ ∃ x⃗ ∈ Rn is given by linear combinations of a
given set of vectors, where the number of vectors is equal to n− rk(A)

With vector spaces, we try to reconstruct everything using the idea of linear combinations; vector
space is essentially the space where linear combinations make sense. It begs the question of what is
needed to form linear combinations?

• Addition

• Dilations

“But wait... what is an operation?”

Definition. An internal operation/composition law on a set E is a function ∗; E×E → E, where
E × E = {(x, y) | x ∈ E, y ∈ E} and (x, y) 7−→ x ∗ y ∈ E where ∗ is the operation

Definition. An external operation between 2 sets K, E where · ; K× E → E, (λ, x) 7−→ λ · x

Example. Suppose we have E = R2,K = R. The dilation operation can be expressed as

· ; K× E → E (λ, x⃗) 7−→ λ · x⃗ = (λx1, λx2)

Definition. (E,+, ·) is a vector space over K (K-v. s.) if + is an internal operation and · is an
external operation K× E → E that satisfies the following axioms:

1. There is a “0 element” 0E where u+ 0E = 0e + u = u ∀ u ∈ E
2. + is associative, ∀ u, v, w,∈ E, (u+ v) + w = u+ (v + w)

3. Every element u ∈ E has an inverse/opposite (−u) ∈ E ∋ u+ (−u) = (−u) + u = 0

4. + is commutative, ∀u, v,∈ E, u+ v = v + u ⇐⇒ (E,+) is an abelian group

5. · distributes over +, where λ · (u+ v) = λ · u+ λ · v
6. + distributes over ·, where (λ+ µ) · u = λ · u+ µ · u
7. λ · (µ · u⃗) = (λ · µ)u⃗
8. IK · u = u, ∀ λ, µ ∈ K; u, v ∈ K

Example. Suppose function F : R→ R. Then addition is if f, g ∈ F(R,R) :

f + g is the function defined as (f + g)(x) = f(x) + g(x),∀ x ∈ R

Dilation is where if λ ∈ R, f ∈ F(R,R),

(λ · f)(x) = λf(x),∀ x ∈ R

Therefore (F(R,R),+, ·) is a vector space.

Example. (R, ∗, ·) where x ∗ y = x+ y + 1 is not a vector space.

1. Doesn’t distribute over ∗

12



2.2 Subspaces

Fix (E,+, ·) = vector space over K. Then,

Definition. A subspace F ⊆ E is a subset satisfying 2 conditions.

Vector space properties. For λ ∈ K, u ∈ E:

1. λ · u = 0E ⇐⇒ λ = 0 or u = 0

2. −(λ · u) = (−λ) · u

Proof. For =⇒ (1):

∀v ∈ E, v + 0E = v.u+ v =
1

λ
(λv + λu) =

1

λ
(λv) = v + 0E

For ⇐=, suppose λ = 0 or u = 0E . If λ = 0, we want λ · u = 0.

λ · u = 0 · u = (0 + 0) · u = 0 · u+ 0 · u =⇒ 0 · u = 0 · u+ 0 · u =⇒ 0 = 0 · u

For (2): (exercise) prove that

λ · u+ (−λ · u) = 0 and λ · u+ (−λ) · u = 0

λ · u+ (−λ) · u = (λ+ (−λ)) · u = 0

Definition. A subspace F ∈ E is a subset satisfying 2 conditions:

1. ∀ u, v ∈ F, u+ v ∈ F .

2. ∀λ ∈ K,∀ u ∈ F, λ · u ∈ F

Proposition. ∀A ∈Mm,n(R), ker(A) is a subspace of Rn

Proof. Let x⃗, y⃗ ∈ ker(A) ⊆ Rn, let λ ∈ R⇐⇒ Ax⃗ = Ay⃗ = 0 Then, λx⃗+ y⃗ ∈ ker(A) = λ(Ax⃗) +Ay⃗ =
0⃗

Example. F = {M ∈Mn(R), tr(M) = 0} is a subspace.

Proof. tr(λA+B) =
∑n
i=1(λaii + bii) = 0

Example. E = F(R,R) be function R → R. F = {f ∈ E, f(0) = 0} is a subspace but G = {g ∈
E, f(0) = 0} is not. Important subspaces of E:

• F = C([a, b],R) are continuous functions that are real valued.

• F = Rn[x] are polynomials with degrees ≤ n

Example. E is vector space over K. Fix e1, ..., ek ∈ E. For F = span(e1, ..., ek), it is the smallest
subspace containing E1, ..., ek Why is it the intersection of all subspaces of E containing e1, ..., ek?

13



2.3 Linear Independence

Let E be a K vector space. If we fix e1, ..., ek ∈ E. Then the family of vectors in E is said to be
linearly dependent if ∃ λ1, ..., λk ∈ K not all zero such that λ1e1 + ...+ λkek = 0E .

Thus, they are linearly independent if

λee1 + ...+ λeek = 0 =⇒ λ1 = λ2 = ... = 0

Example. Pick A ∈Mn,k(R), set Λ⃗ = {λ1, ..., λk}

AΛ⃗ = 0⇐⇒ λ1C1(A) + λ2C2(A) + ...+ λkCk(A) = 0

Therefore, AΛ = 0 tells if columns are linearly independent or not.

Example. S = (p0, ...,n ) within E with pk(x) = xk. We can pick λ0, ..., λn ∈ R such that λ0p0+ ...+
λnpn = 0. If λ0 = 0, I get λ1x + ... + λnx

n = 0. Then we differentiate in x so that ∀ x, λ1 + 2λ2x +
3λ3x

2 + ...nλnx
n−1 = 0, so λ1 = 0. Iterate this reasoning to show that ∀ i, λi = 0. So S is linearly

independent.

Exercise: Check that any subset of a linearly independent set is linearly independent.

Proof. The original independent set S = (e1, ..., ek). Let the subset S0 = (e1, ..., ep) with p ≤ k.

Let λ1, ..., λp ∈ K. such that λ1e1 + ... + λpep = 0 ⇐⇒ set λp+1 = ... = λk = 0, λ1e1 + ... + λpep +
λp+1ep+1 + ...+ λkek = 0.

Then, (e1, ..., ek) linearly independent =⇒ λ1 = ... = λp = λp+1 = ... = λk = 0, so S0 is linearly
independent.

Corollary. By contrapositive, a set of vectors containing a linearly dependent set is also linearly
dependent.

2.4 Spanning Sets

Definition. We have E = K vector space. A set of vectors S = (e1, ..., en) is spanning for E if
∀ x ∈ E,∃ xi ∈ K such that x =

∑n
i=1 xiei. In other words, every vector x ∈ E can be written as

linear combination of e1, ..., en, or
span(e1, ..., en) = E

Example. E = {(x, y, z) ∈ R3, x+y+z = 0} The spanning set can be found by solving the equation,
where

x+ y + z = 0⇐⇒

xy
z

 = s

 1
−1
0

+ t

 1
0
−1

 =⇒ the two vectors span E

Example. Find a spanning set of E = {A ∈M2(R), tr(A) = 0}.

A =

[
a b
c −a

]
∈ E =⇒ a

[
1 0
0 −1

]
+ b

[
0 1
0 0

]
+ c

[
0 0
1 0

]
=⇒ A ∈ span(E1,1 − E2,2, E1,2, E2,1)

Example. E = R[x], S = (1, x, x2, ..., xn, ...) is a spanning set for E of finite linear combinations.

14



2.5 Basis

Definition. Let E be a K vector space. A basis B of E ⇐⇒ B is linearly independent and spanning
for E.

Example. E = Rn. (ei)i∈[1,n] are the canonical or standard basis.

Example. Suppose

A =

1 2 3 4
5 6 7 8
9 10 11 12


Find the basis for ker(A) and col(A) = span(C1(A), C2(A), C3(A), C4(A)).

Basis of

ker(A), x =


x
y
z
t

 ∈ ker(A)⇐⇒ Ax = 0

Row reducing,

A =

1 2 3 4
5 6 7 8
9 10 11 12

 =⇒

1 2 3 4
0 1 2 3
0 0 0 0


Thus, after simplifying, 

x
y
z
t

 = a


1
−2
1
0

+ b


2
−3
0
1


Set e1, e2 as the two previous vectors, then ker(A) = span(e1, e2). Since (e1, e2) are linearly indepen-
dent, (e1, e2) = basis of ker(A).

For the basis of span(C1(A), ..., C4(A)), we know that ker(A) tells which vectors can be thrown away
without altering the space. Thus,

e1 ∈ ker(A) =⇒ C1(A)− 2C2(A) + C3(A) = 0, e2 ∈ ker(A) =⇒ 2C1(A)− 3C2(A) + C4(A) = 0

I can conclude that C3, C4 are linear combinations of C1, C2 so span(C1, ...C4) = span(C1, C2).
Then, we can also check by hand that C1, C2 are linearly independent. Thus, (C1, C2) = basis of
column space of A.

Remark: This basically explains the rank nullity theorem.

Theorem. Let E = K vector space, B = (e1, ..., en) a finite basis of E. Then

∀ x ∈ E,∃ !x1 ∈ K such that x =

n∑
i=1

xiei

Proof. Let x ∈ E. There is existence because B spans E =⇒ ∀ i ∈ {1, ..., n}, ∃xi ∈ K such that
x =

∑
i xiei.

For uniqueness, suppose we can also write x =
∑
i yiei, then

x =

{∑
i xiei∑
i yiei

=⇒
∑
i

xiei −
∑
i

yiei = 0 =⇒
∑
i

(xi − yi)ei = 0.

B linearly independent =⇒ (xi − yi = 0 ∀ i ∈ [1, n]) =⇒ xi = yi
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2.6 Dimensions

Definition. Vector space E is finite dimensional if it has a finite generating/spanning set.

Theorem. Existence of a Basis. Let g = (e1, ..., en) be a generating set. Let I = (e1, ..., ek) be a
linearly independent set within g. Then, one can turn I into a basis, by adding up elements of g (not
in I).

Proof. Let N = {#J, J linearly independent set containing I, within g} ⊆ N.

• N ̸= ∅, I satisfies the conditions and #J = k =⇒ k ∈ N .

• N bounded below by k, above by n. This is proven by least upper bound property in N, where
every bounded, non ∅ subset of N has a maximum. We can denote the maximum of N as
p = max(N).

We can conclude that (e1, ..., ep) is a linearly independent set within g.

We claim that B is a basis of E, which is proved by showing ∀ i ∈ [1, n], ei ∈ span(e1, ..., ep). This
is obvious if i ∈ [1, p]. If not, then (e1, ..., ep, ep+1) is linearly dependent; otherwise, (e1, ..., ep, ep+1)
linearly independent, ⊆ g with p+ 1 > p = max(N) elements, which is impossible.

So, (e1, ..., ep, ep+1) is linearly dependent. Thus ∃ λ1, ..., λp, λp+1 ∈ K not all 0, such that λ1e1 + ...+
λpep + λp+1ep+1 = 0. λp+1 ̸= 0 because (e1, ..., ep, ep+1) linearly dependent.

This implies that ep+1 ∈ span(e1, ..., ep) = span(B), this holds for ej ∃ j ≥ p + 1. =⇒ g ⊆
span(B) =⇒ span(g) ⊆ span(B) since g generates E =⇒ E = span(B) and B generates E.

Corollary. From any finite generative set, one can extract a basis of E.

Proof. Apply theorem with I = ∅.

Remark: Vector space {0} has ∅ as basis.

2.6.1 Number of elements in a Basis

Theorem. Steinitz’s Exchange Lemma Let I = (e1, ..., ep) be any linearly independent set and
g = (f1, ..., fq) be any generating set, then p ≤ q and up to renumbering, (e1, ..., ep, fp+1, ..., fq)
generates E. The notation of ‘up to renumbering’ does not necessarily corresponds to the number in
g.

Proof. By induction, we can start with p = 0 with I = ∅, so there are nothing to do as f is already
generating.

With the induction step, suppose this is true with linearly independent sets with cardinal (number of
elements) p−1, or I = (e1, ..., ep) independent =⇒ (e1, ..., ep−1) independent. We can apply induction
hypothesis to have p−1 ≤ q, and can construct generating set of the form (e1, ..., ep−1, fp, fp+1, ..., fq)
up to renumbering.

If p−1 = q =⇒ (e1, ..., ep−1) is generating =⇒ ep is linearly combination of (e1, ..., ep−1), impossible
because I linear independent. So p− 1 < q =⇒ p ≤ q.

We want to find fio to exchange with ep, so (e1, ..., ep−1, ep, fp+1, ..., f̂io , ..., fq) is generating where
ˆfi+o symbols the element to omit.
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It is given that gp−1 generating implies ∃ λ1, ..., λp−1, µp, ..., µq ∈ K such that

ep =

p−1∑
i=1

λiei +

q∑
j=p

µjfj

The idea is the swap with fjo such that µjo ̸= 0. This is possible since if µj = 0 ∀ j ∈ [p, q], =⇒ ep =∑p−1
i=1 λiei, which is impossible since I is linearly independent. So, ∃ jo ∈ [p, q] such that µjo ̸= 0.

Therefore,

fjo =
1

µjo

ep − p−1∑
i=1

λiei −
q∑

j=p,j ̸=jo

µjfj


Then, gp(e1, ..., ep−1, ep, fp, ..., ˆfjo , ..., fq) is generating. fjo is linear combination of them. gp−1 is
generating, and fjo ∈ gp−1. Therefore, all members of gp−1 are linear combinations of elements of
gp + gp−1 generating =⇒ gp generating.

Corollary.

1. All basis of E finite dimensional has same cardinal (number of elements).

2. Define dimKE = dimensions of E over K = number of elements of any basis.

3. dimKE is the maximum number of linearly independent elements in E and the minimum number
of elements in a generating set.

4. If n = dimE, then any set with n+ 1 vectors is linearly dependent.

5. B basis ⇐⇒ B linearly independent with number of B = n ⇐⇒ .B generating set with number
of B = n

Example. C = complex numbers, vector space of C and over R.

dimC C = 1, but dimR C = 2

Example. dimK Kn = n; dimMm,n(R) = nm; dimRn[X] = n+ 1

Example. dimR[x] =∞. More generally, E is infinite dimensional if we can find sequence of vectors
(xi)i∈N, such that ∀n ∈ N, (e0, ..., en) linearly independent.

Proposition. Let F be subspace of E, dimE < ∞. Then F is finite dimensional and F = E iff
dim(F ) = dim(E).

Proof. Consider In be the set of linearly independent sets within F . Pick a maximum linearly inde-
pendent set in F . By least upper bound proposition, the number of elements of this is ≤ n = dimE.
Moreover, it’s a basis of F .

The “ =⇒ ” direction is obvious. For “⇐=”, let dim(F ) = p,dim(E) = n. Pick a basis of F ,
(e1, ..., ep), complete into a basis of E. Since p = n, (e1, ..., en), it is already basis of E.

2.6.2 Construction of Spaces

Cartesian product of 2 spaces E and F : E × F :

E × F = {(x, y); x ∈ E, y ∈ F}

Addition: (x, y) + (x′ + y′) = (x+ x′, y + y′) Dilation: λ · (x, y) = (λ · x, λ · y)
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Proposition. If BE(e1, ..., ep) and BF (f1, ..., fq) are basis of E and F respectively. Then,
((e1, 0), ..., (ep, 0), (0, f1), ..., (0, fq)) is a basis of E × F . This also implies that dimE × F = dimE +
dimF

V is vector space. Let E,F be 2 subspaces f V . The sum of E and F is

E + F = {x+ y;x ∈ E, y ∈ F}

For direct sums, we say that V is a direct sum of E and F , denoted as E ⊕ F if every vector v ∈ V
admits a unique decomposition. where v = x+ y;x ∈ E, y ∈ F .

Proposition.

V = E ⊕ F.⇐⇒

{
Every v ∈ V writes v = x+ y, x ∈ E, y ∈ F
E ∩ F = {0}

Proof. If E ∩F = {0}, and v = x+ y = x′ + y′. When their intersection is 0, x−x′ = y− y′ and each
element is in E and F respectively. Then, since{

x− x′ ∈ E ∩ F = {0}
y − y′ ∈ E ∩ F = {0}

=⇒ x− x′ = 0, y − y′ = 0 =⇒ x = x′, y = y′

Thus if v = E ⊕ F ; (ei)i∈[1,p] basis of E, (fj)j∈[1,q] basis of F , then (e1, ..., ep, ..., f1, ..., fq) is basis of
V . Such a basis is said adopted to the decomposition V = E ⊕ F and call F a complimentary
subspace of E.

Remark: If E is subspace of V (dimV <∞), then, E admits a complimentary subspace.

Grassmann Theorem. dim(E + F ) = dimE + dimF − dim(F ∩ F )

Proof. Let E′ be a complimentary subspace to E ∩F within E ⇐⇒ E′ ⊕ (E ∩F ) = E. Thus, we can
rewrite dimE = dim(E ∩ F ) + dimE′ .

Observe that E′ is also a complimentary subspace of F inside E + F , so{
E + F = E′ ⊕ F
E′ ∩ F = {0}

=⇒ dim(E + f) = dimE′ + dimF = dimE + dimF − dim(E ∩ F )

To prove the observation E′ ∩ F = {0}, if x ∈ E′ ∩ F , then x ∈ F and x ∈ E′ ⊆ E =⇒ x ∈ E ∩ F
and x ∈ E′ =⇒ x ∈ (E ∩ F ) ∩ E′ = {0}.

To prove E + F = E′ + F , use double inclusion. It is obvious that ⊇. For ⊆, pick x + y ∈ E + F .
Check x+ y = x′ + y′ with x′ ∈ E′, y′ ∈ F . x ∈ E = E′ ⊕ E ∩ F =⇒ x = xE′ + xE∩F =⇒ x+ y =
xE′ + (xE∩F + y). With xE∩F + y, we conclude that xE∩F ⊆ F , y ∈ F . We can write any element in
E + F as element in E′ + F , so E + F ⊆ E′ + F .
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3 Linear Maps

3.1 Generalities

Definition. Let E,F be 2 vector spaces over K, a linear map (or linear operator) f : E → F is a
map satisfying the following conditions:

• f(λu) = λf(u); ∀λ ∈ K, u ∈ E
• f(u+ v) = f(u) + f(v); ∀u, v ∈ E

This could be compressed into a single axiom: ∀λ ∈ K, ∀u, v ∈ E, f(λu + v) = λf(u) + f(v).

Algebraically, this could be interpreted as

f

(∑
i

λiui

)
=
∑
i

λif(ui)

Geometrically, this also tells us that span(u, v) is mapped to span(f(u), f(v)) This implies that
f(span(u1, ..., vn)) = span(f(u1), ..., f(un)).

On a higher level, we can think that f : E → F preserves the vector space structure of E,F since it
sends linear combination in E to F .

Proposition. Let f : E → F . Then ker(f) = {x ∈ E; f(x) = 0} is a subspace of E and im(f) =
{f(x); x ∈ E} ⊆ F is a subspace of F .

Exercise: Check the above propositions

Notation: L(E,F ) or Hom(E,F ) (homomorphism) is the space of linear maps E → F .
Exercise: Prove that this is also a vector space (subspace of functions E → F ).

Example. Let A ∈ Mm,n(R), where x ∈ Rn =
[
x1 . . . xn

]T
. Then f(x) = Ax, we have f : Rn →

Rmis linear.

Example. Let f : Rn → Rm be a linear map. Pick (ei)i∈[1,n] to be the basis of Rn. To know f
entirely, it suffices to know it only for a finite number of vectors, namely f(ei), i ∈ [1, n]. This is
because if we let x ∈ Rn, we can write

x =
∑
i

xiei =⇒ f(x) = f

(∑
i

xiei

)
=
∑
i

xif(ei)

If ei are standard basis of Rn and fi are standard basis of Rm, we can set

matrix A =
[
f(e1) . . . f(en)

]
where fei =

[
y1,i . . . ym,i

]T
Sub Example. We have

f(x1, x2) =

[
x1 + 2x2
3x1 + 4x2

]
= A

[
x1
x2

]
, with A =

[
1 2
3 4

]
=⇒ f(e1) = f(1, 0) =

[
1
3

]
= C1(A) f(e2) = f(0, 1) =

[
2
4

]
= C2(A)

Consequence:
im(f) = column space (A) = span(C1(A), . . . , Cn(A))

because any f(x) is linear combination of f(ei) :

f

(
n∑
i=1

xiei

)
=

n∑
i=1

xif(ei) =

n∑
i=1

xiCi(A)
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Definition. When a linear function lands in scalers, we call it linear form / functional

Example. Show trace function : Mn(K) → K is a linear form. Formally, we can write this as
tr∈ L(Mn(K),K).

∀A,B ∈Mn(K), λ ∈ K. tr(λA+B) =

n∑
i=1

(λA+B)ii = λ
∑
i

Aii +
∑
i

Bii = λtr(A) + tr(B)

Example. E = R[x]. f = d
dx ∈ L(E,E). If P (x) = a0 + a1x+ . . .+ anx

n, then f(P ) = a1 + 2a2x+
. . .+ nanx

n−1. This is linear.

Example. Let E = C([a, b]) be continuous functions on [a, b]. f =
∫ b
a
· dt, E → R. If φ ∈ E is

continuous function, then f(φ) =
∫ b
a
φ(t) dt.

Definition. Let f : E → F . It is

• surjective if ∀y ∈ F , f(x) = y has a solution x ∈ E ⇐⇒ ∃ x ∈ E, f(x) = y (implies existence
of solution)

• injective if f(x) = f(x′) ∃ x, x′ ∈ E =⇒ x = x′ (implies uniqueness of solution when they
exists)

• bijective if it is injective and surjective ⇐⇒ ∀ y ∈ E,∃ !x ∈ E, f(x) = y

Proposition. Let f : E → F .

1. f surjective ⇐⇒ f has a right inverse, where ∃ g : F → E ∋ f ◦ g = idF︸︷︷︸
idF (y)=y

2. f injective ⇐⇒ f has a left inverse, where ∃h, F → E, h ◦ f = idE

3. f bijective ⇐⇒ right and left inverse with both of them equal

Proof. f surjective =⇒ : ∀y ∈ F,∃x ∈ E ∋ f(x) = y. Define g : F → E, where g(y) = one solution
of equation f(x) = y =⇒ (f ◦ g)(y) = f(g(y)) = y. The converse is left as an exercise.

Proof. f injective =⇒ : If f injective, the equation f(x) = y has a solution if y ∈ f(E)︸ ︷︷ ︸
∃!xy∈E∋f(xy)=y

We

define

h(y) =

{
xy, if y ∈ f(E)

anything else, if y /∈ f(E)

Now, we simply check that (h ◦ f)(x) = h(f(x)) = x

Proof. f bijective: If f has left inverse g and right inverse h,

f ◦ h ◦ g =


h ◦ (f ◦ g)︸ ︷︷ ︸

id

= h

(h ◦ f)︸ ︷︷ ︸
id

◦g = g
=⇒ h = g

We can conclude the for finite E,F , the number of elements can be concluded as

• f surjective =⇒ #E ≥ #F

• f injective =⇒ #E ≤ #F

• f bijective =⇒ #E = #F
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3.2 Back to Vector Spaces

Proposition. f ∈ L(E,F ) and B = (e1, ..., en) basis of E, so f(B) := (f(e1), . . . , f(en))

1. f injective ⇐⇒ ker(f) = {0}
2. f(B) generates im(f) = f(E).

3. f surjective ⇐⇒ f(B) generates F
4. f injective ⇐⇒ f(B) linearly independent

5. f bijective ⇐⇒ f(B) is a basis, and dim(E) = dim(F )

Proof. 1 =⇒ : Suppose f injective. Let x ∈ ker(f) ⇐⇒ f(x) = 0 = f(0) =⇒ x = 0.. So
ker(f) = {0}.
⇐=: If ker(f) = 0, let x, x′ ∈ E such that f(x) = f(x′)⇐⇒ f(x)− f(x′) = 0 =⇒ f(x− x′) = 0 =⇒
x− x′ ∈ ker(f) = {0}. S x− x′ = 0 =⇒ x = x′.

Proof. 2: Pick y ∈ im(f), ∃x ∈ E such that f(x) = y. B basis of E so x =
∑n
i=1 xiei for some scalars

x1, . . . , xn ∈ K =⇒ f(x) =
∑n
i=1 xif(ei) ∈ span(f(B))

Proof. 3 =⇒ : f surjective ⇐⇒ f(E) = im(f) = F . From 2, f(B) generates im(f) = F .
⇐=: exercise

Proof. 4 =⇒ : Suppose f injective. Let λ1, . . . , λn ∈ K such that λf(e1) + ... + λnf(en) = 0 ⇐⇒
f (
∑n
i=1 λiei) = 0 =⇒

∑
i λiei ∈ ker(f) = {0} =⇒

∑
i λiei = 0 =⇒ λi = 0 ∀i ∈ [1, n] because B

basis and so it is linearly independent.

Definition. If f ∈ L(E,F ) bijective, we call f isomorphism where dimE = dimF . If f ∈
L(E,E) = L(E) or End(E), we call f endomorphism (with matrices, it would be square matrices).
If f ∈ End(E) and is isomorphism, we call f an automorphism.

Corollary. If f ∈ L ∈ (E,F ) with dimE = dimF , then f injective ⇐⇒ f surjective ⇐⇒ f
isomorphism.

Corollary. If f ∈ End(E) with dimE <∞, then f injective ⇐⇒ f surjective ⇐⇒ f automorphism.

Corollary. E finite dimensional ⇐⇒ E isomorphic to Kn. In particular, E isomorphic to F ⇐⇒
dimE = dimF .

Example. E = Rn[x],dim(E) = n + 1. E isomorphic to Rn+1 via φ : E → Rn+1. B = (1, x, ..., xn)
basis of E where e = (ei)i∈[1,n+1] standard basis of Rn+1. Set φ such that φ(xi) = ei+1,∀i ∈ [0, n]...

Proof. “⇐=”: by definition

“ =⇒ ”: Pick a basis B = (e1, ..., en) of E. Set φ : E → Kn with φ(ei) for basis vectors. Set

φ(ei) =
[
0...0 1 0...0

]T
, so φ(x) = φ(

∑n
i=1 xiei) =

[
x1 . . . xn

]T
Important Remark: ≃ notates isomorphism. If φ : E ≃ F , then φ−1 is also linear. (Exercise. Use
injectivity). Identifying that f : Rn → Rn linear ⇐⇒ f(x) = Ax for some A ∈Mn(R), we can look at
this with square matrix. Previously, we had A ∈ Mn(R) left invertible⇐⇒ A right invertible ⇐⇒ A
invertible.

Proof. f(x) = Ax, f ∈ End(Rn).

f left invertible ⇐⇒ f injective ⇐⇒ f surjective︸ ︷︷ ︸
f right invertible

⇐⇒ f bijective︸ ︷︷ ︸
f invertible
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A ∈ GLn(R)⇐⇒ Ax = 0 admits only x = 0 as solution.

Proof.

f(x) = Ax, f ∈ End(Rn) =⇒ f isomorphism ⇐⇒ f injective ⇐⇒ ker(f) = {0}

3.3 Rank-nullity Theorem

Fix f ∈ L(E,F ). Linear system Ax = 0 with A ∈Mm,n(K) had

rank(A) + dim ker(A) = n

Rank-nullity Theorem. f ∈ L(E,F ).

dim ker(f) + dim im(f) = dimE

We call rank(f) = dim im(f).

Heuristic Proof: (see TH2A 3) f ∈ L(Rn,Rn), f(x) = Ax. We know that im(f) = column space(A).
Take one solution to Ax = 0 so show a linear relationship between columns. Extract a basis of im(f)
by erasing dim ker(F ) vectors.

Pick a basis (e1, ..., ep) of ker(f) and complete into basis of E, B = (e1, ..., ep, ep+1, ..., en). From last
time, we know that f(B) generates im(f) =⇒ f(B) = (f(e1), ..., f(ep)︸ ︷︷ ︸

=0

, f(ep+1), ..., f(en)︸ ︷︷ ︸
n−p elements

). We claim

that (f(ep+1), ..., f(en)) is the basis of im(f) since it is generating. Looking at its linear independence,
we pick λp+1, ..., λn ∈ K such that λp+1f(ep+1)+ ...+λnf(en) = 0⇐⇒ f(λp+1ep+1 + ...+ λnen︸ ︷︷ ︸

in ker(f)=span(e1,...,ep)

) = 0.

So, the only possibility is that λp+1ep+1 + ...+ λnen = 0 =⇒ λp+1 = ... = λn = 0

Second Proof (technically the same):

Proof. Let E0 be the complimentary subspace of ker(f) in E =⇒ E0 ⊕ ker(f) = E. Then,
f : E0 → f(E0) is an isomorphism, since it is subjective by definition. To prove its injectivity, we pick
x ∈ ker(f0), where f(x) = 0. So, x ∈ ker(f) ∩ E0 = {0}. Also, f(E0) = im(f) and f0 isomorphism
=⇒ dimE0 = dim(im(f)). dimE = dimE0 + dim ker(f) = dim im(f) + dim ker(f).

Example. Let V be a finite dimensional vector space where E,F are subspaces of V . We have
dim(E + F ) = dimE + dimF − dimE ∩ F .

Proof. Set φ : E × F → E + F , where (x, y) 7→ φ(x+ y) = x+ y. ker(φ) = {(x,−x); x ∈ E ∩ F}, so
φ is surjective by definition. We see that ker(φ) is isomorphic to E ∩ F via z ∈ E ∩ F 7→ (z,−z) ∈
ker(φ) =⇒ dim ker(φ) = dimE ∩ F . So, grassmann follows from rank-nullity.

Exercise: f endomorphism of E. Then f injective ⇐⇒ f surjective ⇐⇒ f isomorphic. Prove with
rank-nullity.

Example. E
φ−→ F

g−→ G. φ isomorphism, g ∈ L(F,G). Then rk(g ◦ φ) = rk(g).

Example. E
f−→ F

Ψ−→ G. Ψ isomorphism, f ∈ E ,F . Then, rk(φ ◦ f) = rk(f)

Exercise: Prove the statements above, which shows that multiplication by inverse matrices doesn’t
change rank.
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3.4 Hyper Planes and Linear Forms

The purpose of this is to abstract row rank. We denote E = K vector space and E∗ = L(E,K).

Example. If E = Rn, any linear form is a function φ(x1, ..., xn) = a1x1 + ... + anxn. When n = 3,
ker(φ) is a plane. In general, by rank-nullity theorem, dim ker(φ) = n− 1. If φ1, ..., φp ∈ E∗,

x ∈
p⋂
i=1

ker(φi); in E = Rn ⇐⇒ x solution of linear system

In Rn, φ1, ..., φp linear independent ⇐⇒ row vectors of the linear system are linearly independent.

Theorem. If φ1, ..., φp ∈ E∗ linear independent, then

dim

(
p⋂
i=1

ker(φi)

)
= dimE − p

We interpret solution of the linear system as intersection of hyperplanes ker(φi)

3.5 Bases

∀x ∈ E, we can write x =
∑
j xjej =⇒ f(x) =

∑
j xjf(ej). In turn, we can express ∀ ∈ [1, n], f(ej)

with coordinates in C =⇒ f(ej) =
∑m
i=1 ai,jfi ∃ ai,j ∈ K. We get a matrix A = (ai,j)i∈[1,m],j∈[1,n]. In

particular, we need only ai,j to determine f , and there are only m×n parameters =⇒ dimL(E,F ) =
m× n.

Definition. We define matrix [f ]B,C of f relative to bases B, C is the matrix A above.

[f ]B,C = [f(B)]C =
[
[f(e1)]C · · · [f(en)]C

]
Then f(B) = (f(e1), ..., f(en)) ⊆ F so each f(ej) can be written as coordinates in basis C. Example.
f : R3 → R2 where

f(x1, x2, x3) =

[
x1 − x2 + x3
x1 + x2 + x3

]
B = (e1, e2, e3) are standard basis of R3 and C = (f1, f2) are standard basis of R2.

f(e1) =

[
1
1

]
= f1 + f2 f(e2) =

[
−1
1

]
= −f1 + f2 f(e3) =

[
1
1

]
= f1 + f2

Example. If B′ = (e′1, e
′
2, e

′
3) = (e1 − e2, e1 + e2, e2 + e3)

f(B′) : f(e′1) =
[
2
0

]
, f(e′2) =

[
0
2

]
, f(e′3) =

[
0
2

]
=⇒ [f ]B,C =

[
2 0 0
0 2 2

]

Example. f = d
dx . If P (x) = a1 + a1x+ a2x

2 =⇒ f(P ) = a1 + 2a2x:

[f ]B =

0 1 0
0 0 2
0 0 0


Theorem. If f ∈ L(E,F ), B = (e1, ..., en) = basis of E and C = (f1, ..., fn)= basis of F . We denote

[x]B =
[
x1 . . . xn

]T
B means x =

∑n
i=1 xiei. Then [f ]B,C [x]B = [f(x)]C . In addition, if g ∈ F ,G and

D is basis of G, then [g ◦ f ]B,D = [g]C,D[f ]B,C .
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Example. Let θ ∈ R. Let rθ be the rotation angle θ ∈ End(R2) and B = (e1, e2). Then, rθ(e1) =
cos(θ)e1+sin(θ)e2 and rθ(e2) = − sin(θ)e1+cos(θ)e2. If ψ is another angle and rθ+ψ = rθ ◦rψ. Then,
s

Theorem.
[g ◦ f ]B,D = [g]C,D[f ]B,C

Proof. [g ◦ f ]B,D has column vectors [(g ◦ f)( ej︸︷︷︸
∈B

)]D. We have

(g ◦ f)(ej) = g(f(ej)) = g

(∑
k

bk,jfk

)
=
∑
k

bk,jg(fk) =
∑
k

bk,j
∑
i

ai,kgi =
∑
i

(∑
k

ai,kbk,j

)
gi

= (AB)i,j and AB = [g]C,D[f ]B,C

Corollary. [f ]B,C [x]B = [f(x)]C

3.6 Transition Matrix

When we have B,B′ as 2 bases of E, we want to translate [x]B into [x]B′ .

Definition. The transition matrix B to B′ is denoted as

PB→B′

Corollary. When f = id, C = B′,D = B′′, then

PB→B′ [x]B′ = [x]B PB′→B′′PB→B′ = PB→B′′

Example. For matrix f ∈ L(E,F ),B basis of E and B′ basis of F , with E = F and f = idE .
B = (ej) and B′ = (e′i).

PB→B′ = [id]B,B′ =⇒ PB→B = In

The consequence is that we can conclude PB→B′ ∈ GLn(K) and PB′→B = P−1
B→B′

Theorem. Change of Basis of Linear Maps. With basis B,B′ in E and C, C′ in F with some
matrix f , we have

[f ]B,C = PC′→C [f ]B′,C′PB→B′

3.6.1 Applications to Equivalent Matrices

We can denote equivalent matrices A ∼ B ∈ Mm,n(K) when ∃P ∈ GLm(K), Q ∈ GLn(K) such
that A = PBQ.

Thus, A ∼ B ⇐⇒ A and B represent the same linear map in different bases.

Proof. “ =⇒ ”: A = PBQ as above. Set f : Rn → Rm, f(x) = Ax. If B, C are canonical bases of
Rn,Rm, then [f ]B,C = A. Also, B′ are the columns of Q−1 according to B =⇒ Q−1 = PB′→B and C
are columns of P according to C, =⇒ PC′→C = P , and [f ]B′,C′ = B.

“⇐=”: Change of base formula.
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Exercise: Check on last example.

Revisit the following theorem: A has rank r ⇐⇒ A ∼ Jr

Proof. Set f(x) = Ax: “ =⇒ ” From rank-nullity, basis of ker f = (e1, ..., ep). Here, p = dimker f, r =
rank(f), p + r = n. Complete this into basis of Rn, which is (ε1, ..., εr, e1, ..., ep). Consider f(B) =
(f(ε1), ..., f(εr), f(e1), ..., f(ep)︸ ︷︷ ︸

=0;ei∈ker

) = f(B) = (f(ε1), ..., f(εr)). Completing this into basis of Rm, C =

(f(ε1), ..., f(εr), fr+1, ..., fm). This becomes obvious when we look at change of basis matrix.

“⇐=:” Multiplying by invertible matrix P,ψ(x) = Px invertible map (ψ−1(y) = P−1y). We saw that
comparing f by isomorphisms (left or right) doesn’t change rank of f
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4 Abstract Theory of Determinant

Initially, determinant is motivated by calculation of volume.

Motivation Denote det(u, v)︸ ︷︷ ︸
R2

,det(u, v, w)︸ ︷︷ ︸
R3

be area or volume (with u, v, w) being vectors. Also denote

det = φ and consider the properties of φ.

• φ(λu, v) = λφ(u, v) for λ ̸= 0

• φ(u+ w, v) = φ(u, v) + φ(w, v). (Same for v).

• φ(u, v) = −φ(v, u)

4.1 General Definition

Denote ΛnE∗ as the space of alternating n-linear form (volume form).

Definition. Alternating n-linear form is function φ : E × ...× E︸ ︷︷ ︸
n times

→ K with following properties:

• φ(u1, ..., un) linear in each variable: φ(u1, ..., λui+vi, ..., vn) = λφ(u1, ..., ui, ..., un)+φ(v1, ..., vn)

• φ is alternating: φ(u1, ..., ui, ..., uj , ..., un) = −φ(u1, ..., uj , ..., ui, ..., un) ∀i ̸= j

Proposition. If ui = uj = u ∃ i ̸= j, then φ(u1, ..., u, ..., u, ..., un) = −φ(u1, ..., u, ..., u, ..., un) = 0.
Thus, two same input will result in 0.

Proposition. (u1, ..., un) linearly dependent =⇒ φ(u1, ..., un) = 0.

Proposition. φ(u1, ..., ui + span(u1, ..., un), ..., un) = φ(u1, ..., ui, ..., un). This is an abstract form of
the fact that determinants are “invariant” under this type of column operation.

Remark: These are usual properties of classical determinant of n× n matrices.

Theorem. dimΛnE∗ = 1

This means that ∀ φ,ψ ∈ ΛnE∗, then ∃ λ ̸= 0 such that φ = λψ. It also implies that up to a choice
of unit of volume, there is only 1 choice of alternating n-linear form. Formally:

Theorem. Fix B = basis of E, B = (e1, ..., en).. ∃! φ0 ∈ ΛnE∗ such that φ0(B) = φ0(e1, ..., en) = 1.
Denote φ0 = detB =⇒ detB(B) = 1. Then we have the determinant of (u1, ..., un) in B.

Proof. For n = 2, B = (e1, e2). u =

[
a
b

]
B
= ae1 + be2; v =

[
c
d

]
B
= ce1 + de2.

Let φ ∈ Λ2E∗. Then

φ(u, v) =φ(ae1 + be2, ce1 + de2)

= φ(ae1, ce1) + φ(ae1, de2) + φ(be2, ce1) + φ(be2, de2)

= adφ(e1, e2)− bcφ(e1, e2)
= (ad− bc)︸ ︷︷ ︸

=φ0(u,v)

φ(e1, e2), where φ(e1, e2) is choice of unit of volume =⇒ Λ2E∗ = span(φ0)

For n = 3, φ(u, v, w) = φ0(u, v, w)φ(e1, e2, e3)
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In general, uj =
∑n
i=1 ai,jei =⇒ A =

[
u1 · · · un

]
∈Mn(K).

Then φ(u1, ..., un) = φ0(u1, ..., un) φ(e1, ..., en) where

φ0(u1, ..., un) =
∑
σ∈Sn

(−1)τ(σ)aσ(1),1aσ(2),2 · · · aσ(n),n

where Sn is the symmetric group = all permutations of the set {1, ..., n} and τ(σ) is the number of
transpositions (permutation that only flips 2 elements) involved in σ.

Definition. If A ∈Mn(K), then its determinant det(A) = detB(C1(A), ..., Cn(A))

Example.

det

[
a c
b d

]
= det

B
(ae1 + be2, ce1 + de2) = det

([
a
b

]
B
,

[
c
d

]
B

)
= ad− bc

Properties

1. A invertible ⇐⇒ det(A) ̸= 0

2. If A upper triangular, then detA = a1a2...an. where a1, ..., an are the diagonals

3. detA = det(At)

Proof. Number 1 =⇒ (u1, ..., un) linearly dependent =⇒ φ(u1, ..., un) = 0 when ϖ ∈ ΛnE∗.

“⇐=”: A invertible ⇐⇒ rk(A) = n ⇐⇒ columns of A form a bsis B′ of Rn.

Then, detB(u1, ..., un) = λ detB(u1, ..., un) for some λ ∈ K =⇒ detB(B) = λ detB′(B) =⇒ λ =
detB(B′). Then, detB(B′) detB B′ = 1. detB(B′) = det(A) ̸= 0.

Proof. Number 2: Use the formula with permutations. If σ ̸= id, then there’s at least one i such that
(σ(i), i) spot below diagonal.

Proof. Number 3: det(A) is also a volume form in the rows. n-linearity with respect to rows is
becauses terms aσ = aσ(a),1, ..., aσ(n),n involve each row only once.

Alternating: (n = 2, φ(u, v) = −φ(v, u)) alternating.

Effect of elementary row or column operations. Let A′ be A after some operations.

• Ri ← Ri + λRj has det(A
′) = det(A)

• Ri ← λRi has det(A
′) = λ det(A)

• Ri ↔ Rj has det(A
′) = −det(A)

4.2 Recursive Formula for Determinants

Definition. Let A ∈ Mn(R). △i,j(A) = (i, j) - minor of A = matrix btained from A alter removing
Ri, Cj . Thus, △i,j ∈Mm,n(R). We also define (i, j) - cofactor = det(△i,j).

Theorem. Expansion of det(A) along a row or column.

• Along Ri: det(A) =
∑n
j=1(−1)i+jai,j · det(△i,j)

• Along Cj : det(A) =
∑n
i=1(−1)i+jai,j · det(△i,j)
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Proof. Suppose n = 3, then∣∣∣∣∣∣
· · ∗1
· · ∗3
· · ∗3

∣∣∣∣∣∣ = det
β
(C1, C2, ∗1e1 + ∗2e2 + ∗3e3)

= det
β
(C1, C2 + ∗1e1) + det

β
(C1, C2 + ∗2e2) + det

β
(C1, C2 + ∗3e3)

Example.

D2 =

∣∣∣∣∣∣
λ 1 1
1 λ 1
1 1 λ

∣∣∣∣∣∣ =
∣∣∣∣∣∣
λ 1 1
1 λ 1
0 1− λ λ− 1

∣∣∣∣∣∣ =
∣∣∣∣∣∣
λ 2 1
1 λ+ 1 1
0 0 λ− 1

∣∣∣∣∣∣
= (λ− 1)

∣∣∣∣λ 2
1 λ+ 1

∣∣∣∣ = (λ− 1)

∣∣∣∣λ+ 2 2
0 λ− 1

∣∣∣∣ = (λ− 1)2(λ+ 2)

4.3 Vandermonde Determinant

Let x1, ..., xn ∈ K, then

Vn(x1, ..., xn) =

∣∣∣∣∣∣∣∣∣
1 1 . . . 1
x1 x2 . . . xn
...

...
. . .

...
xn−1
1 xn−1

2 . . . xn−1
n

∣∣∣∣∣∣∣∣∣
To solve this,∣∣∣∣∣∣∣∣∣

1 1 . . . 1
x1 x2 . . . xn
...

...
. . .

...
xn−1
1 xn−1

2 . . . xn−1
n

∣∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1
0 (x2 − x1) . . . xn − x1
...

...
. . .

...
xn−2()
xn−1
1 xn−1

2 . . . xn−1
n

∣∣∣∣∣∣∣∣∣∣∣
... =

∏
1≤i<j≤n

(xj − xi)

Another more classical and concise method is the following:

Proof. Set φ(x) = Vn(x1, ..., xn−1, xn), where φ(x) is a polynomial in x with degree n − 1. If we
set x = xi, i ∈ [1, n − 1], then 2 columns equal =⇒ φ(xi) = 0 =⇒ x1, ..., xn are roots of
φ(x) ∈ Rn[x] =⇒ φ(x) = α(x− x1)...(x− xn−1). Expansion along Cn shows that α = (n, n) minor
= Vn−1(x1, ..., xn−1) =⇒ φ(x) = Vn−1(x1, ..., xn−1).

4.3.1 Determinant of an Endomorphism

Definition. Let E = K vector space. B is the basis of E, f ∈ End(E). Then

det(f) = det
B
(f(B)) = det([f ]B)

Rewriting, let u1, ..., un ∈ E. Then we have

det
B
(f(u1), ..., f(un)) = λ det

B
(u1, ..., un)

where λ is the same for all vectors ui. Therefore,

det
B
(f(B)) = λ det

B
(B)︸ ︷︷ ︸

=1

=⇒ λ = det(f)

Properties:
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1. det(f) doesn’t depend on choice of basis.

2. If g ∈ End(E), det(g ◦ f) = det(g) · det(f)

3. A,B ∈Mn(K). Then det(AB) = det(A) det(B)

4. If A ∈ GLn(K), then det(A−1) = 1
det(A)

Proof. Property 2: Let u1, ..., un ∈ E.

det
B
(g(f(u1)︸ ︷︷ ︸

=v1

), ..., g(f(un))) =


det(g ◦ f) detB(u1, ..., un)
det(g) detB(v1, ..., vn)

det(g) detB(f(u1), ..., f(un))

Then, detB(f(u1), ..., f(un)) = det(f) detB(u1, ..., un) =⇒ det(g ◦ f) = det(g) det(f).

Proof. Property 1: det(f) = det([f ]B). Let B′ be another basis of E.

[f ]B′ = PB→B′ [f ]BPB′→B =⇒ det[f ]B′ = det(PB→B′) det([f ]B) det(PB′→B)

In a matrix where A = [f ]B, P ∈ GLn(K), B = [g]B

• det(P−1AP ) = det(A)

• det(BA) = det(B) det(A)
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5 Eigenvalues

5.1 Eigenstuff

Definition. Let f ∈ End(E), dimE <∞.

1. λ ∈ K is an eigenvalue of f if ∃ x ̸= 0 ∈ E such that f(x) = λx⇐⇒ x ∈ ker(f − λidE)

2. The x above is called a eigenvector with respect to the eigenvalue λ

3. ker(f − λidE) is the λ eigenspace, or the subspace of all λ eigenvectors.

4. Can replace the above f , id with matrices A, In to get matrix version, where:

Ax = λx⇐⇒ x ∈ ker(A− λIn)

Often, with finding eigenvalues,

x ̸= 0 ∈ ker(f − λidE)⇐⇒ (f − λidE) not injective⇐⇒ det(f − λidE) = 0

Definition. χf (λ) = det(f − λidE) = characteristic polynomial of f ∈ End(E), where its roots
are eigenvalues of f . Supppose χf (λ) is split. Then

χf (λ) = (λ1 − λ)m1 · · · (λp − λ)mp

where λ1, ..., λp are eigenvalues are mi are algebraic multiplicity of λi, or malg(λi). Note that if
K = C, all polynomials are split. The geometric multiplicity of λi is

mgeo(λi) = dimker(f − λiid)

Once the eigenvalues are found, let λ be the eigenvalue and solve f(x) − λx = 0, where its solutions
are eigenvectors.

The main interest is to find basis B′ where [f ]B′ has diagonal of eigenvalues counted with multiplicity.

Example. f ∈ End(Rn),

f(x) =

x2 + x3
x1 + x3
x1 + x2

 =⇒ [f ]B =

0 1 1
1 0 1
1 1 0

 . =⇒ χf (λ) =

∣∣∣∣∣∣
−1 1 1
1 −λ 1
1 1 −λ

∣∣∣∣∣∣ = (λ+ 1)(λ− 2)

5.1.1 Purpose of Notations

Example. Let f ∈ End(Rn), f(x) = Ax where A ∈Mn(R) and B be the canonical basis of Rn where
[f ]B = A. Then we can find a basis B′ made of eigenvectors B = (e′1, ..., e

′
n) =⇒ ∀ i ∈ [1, n],∃ λi ∈

K ∋ f(e′i) = λi =⇒ [f ]B is a matrix with diagonal of eigenvalues.

Definition. f ∈ End(E) is diagonalizable if ∃ B′ basis of E made of eigenvectors ⇐⇒ [f ]B is
diagonal.

Theorem. Let f ∈ End(E) with eigenvalues λ1, ..., λp all distinct. Then

f diagonalizable ⇐⇒ ∀ i,malg(λi) = mgeo(λi)

Fact: Geometric multiplicity is always ≥ 1

Example. f ∈ End(R2) such that

f

([
x1
x2

])
=

[
−x1 + 2x2
−3x1 + 4x2

]
. Is this diagonalizable?
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[
−x1 + 2x2
−3x1 + 4x2

]
=

[
−1 2
−3 4

] [
x1
x2

]
=⇒ χf (λ) =

∣∣∣∣−1− λ 2
−3 4− λ

∣∣∣∣ = ∣∣∣∣1− λ 2
1− λ 4− λ

∣∣∣∣ = ∣∣∣∣1− λ 2
0 2− λ

∣∣∣∣
= (1− λ)(2− λ) =⇒ eigenvalues: 1 with A.M. 1, 2 with A.M. 1

=⇒ malg(1) = mgeo(1),malg(2) = mgeo(2) =⇒ fdiagonalizable

To check,

x =

[
x1
x2

]
∈ ker(f − id) = E1(f) ⇐⇒ (A− I2)x = 0 =

[
−2 2
−3 3

]
x

By rank-nullity,

dimker(A− I2)︸ ︷︷ ︸
mgeo(1)

= 1 = malg(1) =⇒ basis E1(f) =

[
1
1

]
= v1

Similar for E2(f), where its basis is

[
2
3

]
= v2. We can conclude that with eigenvector basis v1, v2,

A = PDP−1, D =

[
1 0
0 2

]
, P = PB′→B =

[
1 2
2 3

]
,B′ = (v1, v2)

5.2 Polynomials in Endomorphism

5.2.1 Annihilator Polynomials

Let f ∈ End(E) (or A ∈Mn(K)).

Definition. Polynomial in f if P ∈ K[x], P (x) = a0 + a1x + ... + apx
p, and denote P (f) =

a0id+ a1f + a2f
2 + ...+ apf

p ∈ End(E). With matrices, P (A) = a0In + a1A+ ...+ apA
p.

Definition. Annihilator Polynomial of f : P ∈ K[x] such that P (f) = 0, or P (A) = 0. Then,
If = {P ∈ K[x]; P (f) = 0} = set of annihilator polynomials. This is also called annihilator ideal of
f .

Example.

A =

0 1 1
1 0 1
1 1 0

 , A2 =

2 1 1
1 2 1
1 1 2

 ⇐⇒ A2 −A− 2I2 = 0 =⇒ P (x) = x2 − x− 2 ∈ IA

∴ Here, P annihilates A. Also note in this example that (x2 − x− 2) = (x+ 1)(x− 2), and this has
the same factors as χA(A).

Cayley-Hamilton Theorem. Let f ∈ End(E) such that dim(E) <∞. Then, χf (f) = 0

Definition. Minimal Polynomial: We say that f admits/has a minimal polynomial if ∃P ∈
If , i.e., P (f) = 0,∃ P ̸= 0.

Discussion: If If ̸= {0}, so f admits a minimal polynomial. =⇒ ∃ πf ∈ K[x] of polynomial degree
≥ 1. We pick πf so its leading coefficient equals 1 and call πf “the” minimal polynomial.

Proposition. If P ∈ If , or P annihilates f , then πf divides P . Formally, this means P (x) =
πf (x)Q(x)∃Q ∈ K[x].

Proof. Use Long division. We get

P (x) = Q(X)πf (x) +R(x) =⇒ P (f)︸ ︷︷ ︸
0

= Q(f) ◦ πf (f)︸ ︷︷ ︸
=0 since Q(F ) linear

+R(f) =⇒ R(f) = 0

Hence Rf ∈ If with deg(Rf ) < deg(πf ) =⇒ R = 0 =⇒ P (x) = Q(x)πf (x) and πf divides P .
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Consequences:

• Uniqueness of minimal polynomial by long division.

• Admitting χf is an annihilator polynomial =⇒ πf divides χf so some eigenvalues of f are
roots of πf .

Example. (continued) P (x) = x2 − x − 2 = (x − 2)(x + 1) is the minimal polynomial πA since P
annihilates A and πA divides (x− 2)(x− 1). So, πA(x) = P or (x+ 1) or (x− 2).

πA(x) = x+ 1 not possible since πA = A+ I3 =⇒ A = −I3 which is not possible. Similar argument
for (x− 2).

Proposition. K[f ] finite dimensional iff f admits a minimal polynomial.

Proof. ⇐=: If f has a minimal polynomial πf (x) of degree r > 0, or πf = a0id+a1f+ ...+ar−1f
r−1+

fr =⇒ πf (f) = 0 = a−id+ a1f + ...+ fr =⇒ fr can be written as a non-trivial linear combination
of (id, f, ..., fr−1). Similarly, fk ∃ k ≥ r can also bee written as a linear combination of previous
terms =⇒ (id, f, ..., fr−1) generates K[f ]. This is a basis. Indeed, if it is not lienarly independent,
∃ λ0, ..., λr−1 ∈ K not all 0 such that λ0id + ... + λr−1f

r−1 = 0 ∈ If with degree < r, so this is
impossible.

=⇒ : By contrapositive, if f doesn’t have a minimal polynomial ⇐⇒ If = {0}. Evaluation linear
map has K[x] −−→

φf

K[f ], P (x) 7→ P (f) =⇒ If = kerφf = {0} =⇒ φf injective =⇒ K(f) infinite

dimensional.

Corollary. E finite dimensional =⇒ f has a minimum polynomial.

Indeed, dimE = n =⇒ dimEnd(E)︸ ︷︷ ︸
⊇K[f ]

= n2 =⇒ K[f ] finite dimensional, then use theorem.

Proposition. Let f ∈ End(E)

1. If λ is an eigenvalue of f , then with P ∈ If , λ is a root of P , where P (λ) = 0.

2. For minimum polynomial, all roots of πf in K are also eigenvalues of f .

Proof. 1: P (x) =
∑p
k=0 akx

k =⇒ P (f) =
∑p
k=0 akf

k. Then λ = eigenvalue =⇒ ∃x ̸= 0 such that
f(x) = λx =⇒ fk(x) = λkx. Apple x to P (f), so

P (f)(x)


∑p
k=0 ak f

k(x)︸ ︷︷ ︸
λkx

= P (λ) x︸︷︷︸
̸=0

0, becauseP ∈ If
=⇒ P (λ) = 0

2: Suppose λ root of πf , not an eigenvalue ⇐⇒ ker(f − λid) = {0} =⇒ πf (x) = (x− λ)Q(x) =⇒
πf (f) = 0 = (f − λid) ◦Q(f) =⇒ Q(f) = 0 =⇒ Q ∈ If annihilates f , but deg(Q) < r, and this is
impossible. So, λ is an eigenvalue of f .

Theorem. [Kernel Lemma] Suppose P ∈ K[x] splitting as P = P1P2...Pk, Pi ∈ K[x], i ̸= j, Pi, Pj
relatively prime. Then,

kerP (f) =

k⊕
i=1

ker(Pi(f))
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Proof. For n = 2. Finish by induction. Let P (x) = P1(x)P2(x) with P1(x), P2(x) relatively prime.
From number theory Bezout identity, we have P1, P2 relatively prime =⇒ ∃U1, U2 ∈ K[x], U1P1 +
U2P2 = 1. We know that we want kerP1(f) ∩ kerP2(f) = {0}. Then we can pick x ∈ ∩ =⇒
P1(f)(x) = P2(f)(x) = 0. Then, by Bezout =⇒ U1(f) ◦ P1(f)(x)︸ ︷︷ ︸

=0

+U2(f) ◦ P2(f)(x)︸ ︷︷ ︸
=0

=⇒ x = 0. To

prove kerP (f) = kerP1(f) + kerP2(f), the ⊆ direction is straightforward. For ⊇, pick x ∈ kerP (f).
By Bezout, x = U1(f) ◦ P1(f)(x)︸ ︷︷ ︸

∈kerP2(f)

+U2(f) ◦ P2(f)(x)︸ ︷︷ ︸
∈kerP1(f)

. Here,

P2(f)(U1(f) ◦ P1(f)(x)) = (P2(f) ◦ U1(f) ◦ P1(f))(x) = (U1(f) ◦ P (f))(x) = 0

Similar argument for kerP1(f)

Remark: If P ∈ If , then kerP (f) = E.

Consequence Suppose Cayley-Hamilton true, χf (f) = 0. Suppose χf (λ) = (λ1 − λ)m1 ...(λp − λ)mp .
By kernel lemma,

E =

p⊕
i=1

ker(f − λid)mi

Corollary. Let f ∈ End(E) with non-repeated eigenvalues λ1, ..., λp, then

p∑
i=1

Eλi(f) =

p⊕
i=1

Eλi(f)

with Eλi
(f) = ker(f − λiid) = λi-eigenspace

Proof. Apply kernel lemma to P (λ) = (λ1 − λ)...(λp − λ)

Definition. f invariant subspace. We say a subspace F is f invariant if f(F ) ⊆ F =⇒ f |F ∈
End(F ).

Exercise: f, g ∈ End(E) communting (i.e. f ◦ g = g ◦ f). Then ker(g) and im(g) are f -invariant.

In particular, eigenspace Eλ(f) = ker(f − λid)k are f -invariant. Generalized eigenspaces has ker(f −
λid)k = Ekλ(f)

Proposition. f ∈ End(E). Suppose F be f -invariant subspace of E. Pick F ′ be component of F
in E (F ⊕ F ′ = E), B = BF ∪ BF ′ = basis adapted to direct sum. Recall that f|F ∈ End(F ). Then
[f ]B =

Proposition. If F is f−invariant, then

1. In some basis B of E where B = BF ∩ B′.

[f ]B =
[
...
]

2. χf |F divides χf

3. πf |F divides πf . We see that πf annihilates πf |F and use fk|F = f |kF by f -invariance.

Back to Diagonalization f ∈ End(E) diagonalizable ⇐⇒ ∃B basis of E made of eigenvectors of f .
In this basis, [f ]B is diagonal, so with λ1, ..., λp eigenvalues without repetition, ⇐⇒ E = ⊕pi=1Eλi

(f)
where ker(f − λiid) = λi subspace.
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Example. Let

A =

0 1 1
1 0 1
1 1 0

 , χA(λ) = (2− λ)(1 + λ)2,mA(λ) = (2− λ)(1 + λ)

We have dimE2(A) = 1,dimE−1(A) = 2. With f(x) = A(x), f |E2(A) = 2id|E2(A) and fE−1(A) =
−id|E−1(A). Together, R3 = E−2(A)⊕ E1(A).

Theorem. f ∈ End(E), dimE <∞, with λ1, ..., λp are eigenvalues without repetition.

1. f diagonalizable ⇐⇒ mgeo(λi)︸ ︷︷ ︸
dimEλi

(f)

= malg(λi)

2. f diagonalizable ⇐⇒ mf is split with simple roots.

Proof. Part 1: ⇐=: Suppose mgeo = malg ∀ eigenvalues. By the kernel lemma,

∑
i

Eλi
(f) =

p⊕
i=1

Eλi(f) ⊆ E

Since mgeo = malg, dim
∑
imgeo(λi) = n and dimE = n. So,

⊕
iEλi

(f) subspace of E with same
dimension, so they are equal.

“” =⇒ ”: Lemma: If λi eigenvalue of f , then 1 ≤ mgeo(λi) ≤ malg(λi).

Proof of lemma: f − λiid|Eλi
(f) = (f − λiid)|ker((f−λiid)) = 0 =⇒ f |Eλi

(f) = λiid|Eλi
(f). So in basis

Bi of Eλi
(f), [

f |Eλi
(f)

]
Bi

with λi on the diagonals =⇒ χf |Eλi
(f)

(λ) = (λi − λ)mgeo(λi)

But, χf |Eλi
(f)

divides χf (λ) =
∏p
k=1(λk − λ)malg(λi) =⇒ mgeo(λi ≤ malg(λi)) ■

Suppose f diagonal ⇐⇒ E =
⊕p

i=1Eλi(f) has dimensional dimn =
∑p
i=1malg(λi) and mgeo(λi) ≤

malg(λi). So, this ≤ must be an =.

Proof. “⇐=”: If mf (λ) = (λ − α1)...(λ − αk) with αi ̸= αj∀i, j. Then by the kernel lemma,

mf (f) = 0 =⇒ ker(mf (f)) = E and E =
⊕k

i=1 ker(f − αiid), so E splits into eigenspaces =⇒ E
diagonalizable.

“ =⇒ ” Suppose f diagonalizable ⇐⇒ E =
⊕p

i=1 ker(f − λiid). Set P (λ) =
∏p
i=1(λ− λi). Check P

annihilates f , ∀i ∈ [1, p], pick x ∈ ker(f−λkid). P (f)(x) = (
∏p
i=1(f−λiid))(x). Here, (f−λkid)(x) =

0, so we have the previous expression equal
∏p
i=1(f − λiid) ◦ (f − λkid)(x) = 0 =⇒ P ((x) = 0.

Introduction to Jordan-type Reduction Let A ∈Mn(K). What do we do when A is not diagonalizable?

Theorem. Suppose χA(λ) = (λ1 − λ)m1 ...(λp − λ)mp . f(x) = Ax with f ∈ End(Rn).
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