MATH430 Modern Algebra

Albert Peng

April 27, 2023

Contents

1 Groups and Subgroups

1.1 Binary Operations

Definition. A binary operation $*$ on set S is a function $S \times S \rightarrow S$, or equivalently, $(a, b) \mapsto a * b$.

Example.

- \bullet + is a binary operation on $\mathbb{Z}, \mathbb{Q}, \mathbb{R}$.
- Multiplication is a binary opperation on $\mathbb{Z}, \mathbb{Q}, \mathbb{R}$.
- Division is <u>not</u> a binary operation on $\mathbb{Z}, \mathbb{Q}, \mathbb{R}$ since we cannot divide by 0.
- $S = \mathbb{R} \{0\}$ with divison is a binary operation.

Let S be set of function $f : \mathbb{R} \to \mathbb{R}$, where binary operations satisfy

- $(f + g)(x) = f(x) + g(x)$
- $(f g)(x) = f(x)g(x)$
- $f \circ g(x) = f(g(x))$

Definition. A binary operation $*$ on S is called **commutative** if $a * b = b * a$, $\forall a, b \in S$ **Definition.** A binary operation $*$ on S is called **associative** if $(a * b) * c = a * (b * c)$, $\forall a, b, c \in S$ Thus, associativity also implies

$$
a * b * c * d = (a * b) * (c * d)
$$

= ((a * b) * c) * d
= (a * (b * c)) * d

Composition of functions is *associative* but not *commutative*. Note that they are not necessarily correlated.

Definition. Let $*$ be a binary operation on S. An element $e \in S$ is called an identity element of S if $e * a = a * e = a, \forall a \in S$.

Note: If there is an identity element then it is unique.

Proof. Let e, e' be identity elements. $e = e * e' = e'$. ■

Example.

- + on $\mathbb{Z}, \mathbb{Q}, \mathbb{R}$ has 0 as the identity element
- \cdot on $\mathbb{Z}, \mathbb{Q}, \mathbb{R}$ has 1 as the identity element
- \bullet + ono \mathbb{Z}^+ has no identity element.

1.2 Groups

Definition. A group is a set G with a binary operation $*$ such that

- 1. ∗ is associative
- 2. ∃ an identity element $e \in G$
- 3. Every element $a \in G$ has an inverse, where $\exists b \in G$ such that $a * b = b * a = e$.

Note that the inverse of a is unique.

Proof. if $b_1, b_2 \in G$ such that $b_1 * a = a * b_1 = e$ and $b_2 * a = a * b_2 = e$, then

$$
b_1 * a * b_2 = \begin{cases} b_1 * (a * b_2) = b_1 * e = b_1 \\ (b_1 * a) * b_2 = e * b_2 = b_2 \end{cases} \implies b_1 = b_2
$$

■

Denote the inverse of a as a^{-1} , so that $a * a^{-1} = a^{-1} * a = e$ and the group as $(G, *)$

Example.

- ($\mathbb{Z}, +$) is a group with identity 0 and inverse of a is $-a$
- (\mathbb{Z}, \cdot) is NOT a group, as inverse of 2 does not exist in \mathbb{Z}
- (\mathbb{Q}, \cdot) is NOT a group, as inverse of 0 does not exist in \mathbb{Q}
- $(\mathbb{Q}\setminus\{0\},\cdot)$ is a group with identity 1 and inverse of a is $1/a$
- $(M_n(\mathbb{R}), +)$ is a group with identity 0 matrix and inverse of A is $-A$
- $(M_n(\mathbb{R}), \cdot)$ is NOT a group since inverse of A DNE if $\det(A) = 0$
- $(GL_n(\mathbb{R}), \cdot)$ is a group with identity I_n and inverse of A is A^{-1}

Definition. If $(G, *)$ is a commutative group, then it is called an **abelian group**. **Example.** Let $*$ be defined by $a * b = ab/2$, then $(\mathbb{Q}^+, *)$ is an abelian group.

1.3 Properties of Groups

Suppose $(G, *)$ is a group.

- 1. $(a * b)^{-1} = b^{-1} * a^{-1}$
- 2. $a * b = e \implies b = a^{-1}$
- 3. Cancellation Law: $a * b = a * c \implies b = c$. $b * a = c * a \implies b = c$
- 4. $a * x = b$ has unique solution, where $x = a^{-1} * b$

5.
$$
(a^{-1})^{-1} = a
$$

For $n \geq 1, a \in G$, we denote

\n- $$
a^n := \underbrace{a * a * \dots * a}_{n \text{ times}}
$$
\n- $a^0 := e$
\n

•
$$
a^{-n} := \underbrace{a^{-1} * a^{-1} * \dots * a^{-1}}_{n \text{ times}} = (a^n)^{-1}
$$

$$
\bullet \ \ a^{n+m}=a^n*a^m
$$

Example. The group of integers modulo of n is $\mathbb{Z}_n := \{ [0], [1], ..., [n-1] \}$. then, $(\mathbb{Z}_n, +)$ is a group with

- identity $=$ [0]
- inverse of $[i] = [n i]$
- $[i] + ([j] + [k]) = ([i] + [j]) + [k]$

Example. $\{1, i, -1, -i\}$ is a group under multiplication.

- identity $= 1$
- every element has an inverse
- multiplication on $\mathbb C$ is associative by definition

Notice that $G_1 = \{1, i, -1, -1\}$ and $G_2 = \mathbb{Z}_4 = \{0, 0, 1, 1\}$, $[2, 0, 3]$ form a group isomorphism, where $f: G_1 \to G_2$, with $f(1) = [0], f(i) = [1], f(-1) = [2], f(-i) = [3]$, and f is one-to-one and onto with respect to group operations.

Definition. Two groups $(G_1, *_1), (G_2, *_2)$ are **isomorphic** if there is a one-to-one and onto map $f:G_1\rightarrow G_2$ such that

$$
f(a) *_{2} f(b) = f(a *_{1} b) \forall a, b \in G_{1}
$$

such a function is called **isomorphism**. This is denoted as $(G_1, *_1) \simeq (G_2, *_2)$.

Definition. The **order** of a group, $|G|$ is number of elements of G .

For groups of <u>order 2</u>, $G = \{e, a\}$, there is only ONE way to fill the table.

$$
\begin{array}{c|cc}\n* & e & a \\
\hline\ne & e & a \\
a & a & e\n\end{array}
$$

Rows and columns related to e are obvious. In particular, $a * a \neq a$ because cancellation law would imply $a = e$, which cannot be the case.

For groups of order 3, $G = \{e, a, b, c\}$, up to isomorphism, there is only one group.

$$
\begin{array}{c|cccc}\n* & e & a & b \\
\hline\ne & e & a & b \\
a & a & b & e \\
b & b & e & a\n\end{array}
$$

For groups of order 4: fact - up to isomorphism, there are two groups.

1.4 Finite Non-abelian Groups

1.4.1 Permutations

Definition. A permutation of A is a one-to-one and onto function $\sigma : A \to A$.

Example. Given $A = \{1, 2, 3, 4\}$, we can have $\tau : 1 \mapsto 1, 2 \mapsto 2, 3 \mapsto 4, 4 \mapsto 3$, or equivalently,

$$
\tau = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 4 & 3 \end{pmatrix}, \sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 1 & 4 \end{pmatrix}
$$

In particular, the number of permutations of a set with n elements $= n!$.

The set of permutations of A with composition of function is a group, denoted by S_A , where

- $\bullet\,$ τ,σ one-to-one and onto $\implies\sigma\circ\tau$ one-to-one and onto
- identity element is the identity map
- $\sigma \in S_A \implies \sigma^{-1} \in S_A$, where

$$
\sigma^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 2 & 4 \end{pmatrix}
$$

Here if $A = \{1, 2, ..., n\}$, let S_n (**Symmetric Groups**) be the permutation of S, $|S_n| = n!$.

$$
n = 1 | S_1 = 1 |, S_1 = e
$$

\n
$$
n = 2 | S_2 = 2 | \implies S_2 \text{ abelian}
$$

\n
$$
n = 3 | S_3 | = 6 \implies \text{ not abelian}, \tau \circ \sigma \neq \sigma \circ \tau
$$

 S_n not abelian for $n \geq 3$.

Another way of showing elements of S_n

$$
n = 6 \quad \sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 3 & 2 & 6 & 5 & 1 \end{pmatrix} \Longleftrightarrow \sigma = \underbrace{(1 \ 4 \ 6)}_{3-\text{cycle}} \underbrace{(2 \ 3)}_{2-\text{cycle}} (5) = (1 \ 4 \ 6)(2 \ 3) = (3 \ 2)(4 \ 6 \ 1)
$$

1.4.2 Dihedral Groups

Let D_n be a group of symmetris of a regular n-gon, where D_n is the set of permutations $\sigma \in S_n$ such that i, j adjacent $\Longleftrightarrow \sigma(i), \sigma(j)$ adjacent.

• $D_3 = S_3$

•
$$
D_4: \sigma(1) = 1, \sigma(2) = 3, \sigma(3) = 2, \sigma(4) = 4 \notin D_4
$$
, and $\sigma = (1 \ 3), (2 \ 4), (1 \ 2)(3 \ 4) \in D_4$

Fact: $|D_n| = 2n$

Suppose $\tau = (1 \ 3), \sigma = (1 \ 2 \ 3 \ 4)$ D_n is a group under composition of functions, where $\tau, \sigma \in$ D_n

$$
\tau(\sigma(i)), \tau(\sigma(j))
$$
 adjacent $\iff \sigma(i), \sigma(j)$ adjacent $\iff i, j$ adjacent

Now, if ρ is rotation by $2\pi/n$ and τ is reflection with respect to x-axis,

$$
D_n = \{e, \rho, \rho^2, ..., \rho^{n-1}, \tau, \tau \circ \rho, ..., \tau \circ \rho^{n-1}\}
$$

By convention, if G is an abrbitrary group, we can write ab instead of $a * b$.

1.5 More on Isomorphism Groups

Definition. An operation f is **injective**, or **one-to-one** on a set S if $\forall s_1, s_2 \in S, f(s_1) =$ $f(s_2) \implies s_1 = s_2.$

Definition. An operation f is surjective, or onto on for $f : X \longrightarrow Y$ if $im(f) = Y$. In other words, $\forall y \in Y, \exists x \in X$ such that $f(x) = y$.

Let there be groups $(G_1, *_1), (G_2, *_2)$. Then isomorphhism $\phi(G_1 \rightarrow G_2)$ is one-to-one, onto, and

$$
\phi(a*_1 b) = \phi(a)*_2 \phi(b), \exists a, b \in G_1
$$

We can say that $G_1 \simeq G_2$, they are isomorphic.

Example. $(M_2(\mathbb{R}), +)$ is isomorphic to $(\mathbb{R}^4, +)$, where

$$
\phi\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = \begin{pmatrix} a & b & c & d \end{pmatrix}
$$

Facts:

- 1. If $\phi: G_1 \to G_2$ is an isomorphism, then $\phi^{-1}: G_2 \to G_1$ is also an isomorphism, where $\phi^{-1}(x *_{2} y) = \phi^{-1}(x) *_{1} \phi^{-1}(y), \exists x, y, \in G_{2}.$
- 2. Isomorphism relationship is an equivalence relation on the set of all groups
	- (a) $G \simeq G$. identity map is an isomorphism
	- (b) $G_1 \simeq G_2 \implies G_2 \simeq G_1$
	- (c) $G_1 \simeq G_2$ and $G_2 \simeq G_3 \implies G_1 \simeq G_3$

Proof. (1) Let $a = \phi^{-1}(x)$, $b = \phi^{-1}(y)$, so $\phi(a) = x$, $\phi(b) = y$. $x *_{2} y = \phi(a) *_{2} \phi(b) = \phi(a *_{1} b)$ (3) $\phi: G_1 \rightarrow G_2, \psi: G_1 \rightarrow G_2$

$$
\psi \circ \phi(a *_{1} b) = \psi(\phi(a *_{1} b))
$$

= $\psi(\phi(a) *_{2} \phi(b)))$
= $\psi(\phi(a)) *_{3} \psi(\phi(b))$
= $\psi \circ \phi(a) *_{3} \psi \circ \phi(b)$

■

Example.

- $(\mathbb{Z}, +)$ and $(\mathbb{R}, +)$ not isomorphic
- Exercise: Are $(\mathbb{R} \{0\}, \cdot)$ and $(\mathbb{C} \{0\}, \cdot)$ isomorphic?

Proof. If $\phi : \mathbb{R} - \{0\} \to \mathbb{C} - \{0\}$ is an isomorphism, $\phi(a * 1)$ $=\phi(a)$ $= \phi(a)\phi(1) \implies \phi(1) = 1.$ There $\exists a \in \mathbb{R} - \{0\}$ such that $\phi(a) = i$. So $\phi(a^4) = 1 \implies a^4 = 1 \implies a = \pm 1$. Then, $\phi(-1) = i, 1 = \phi(1) = \phi(-1)^2 = i^2 = -1$, so there is a contradiction and it is not isomorphic.

1.6 Subgroups

Definition. For group G with non-empty subset $H \subseteq G$ is called a **subgroup** such that

- $e \in H$
- $\forall a \in H, a^{-1} \in H$
- $\forall a, b \in H, ab \in H$

We can also denote this subgroup with $H \leq G$.

Definition. If G is a subgroup, then the subgroup consisting of G itself is the **improper** subgroup of G. All other subgroups are **proper subgroups**. The subgroup $\{e\}$ is the **trivial** subgroup of G. All other subgroups are non-trivial.

Example.

- G and $\{e\}$ are subgroups of G .
- $(\mathbb{Z}, +) < (\mathbb{R}, +)$
- $(\mathbb{R}^+, +)$ not subgroup of $(\mathbb{R}, +)$
- Subgroups of \mathbb{Z}_4 : {[0], \mathbb{Z}_4 , {[0], [2]}
- Subgroups of $\mathbb{Z}_5: \{0\}$, \mathbb{Z}_5
- D_n is a subgroup of S_n

Proposition. A non-empty subset H of G is a subgroup if and only if $\forall a, b \in H$, ab^{-1} $\widetilde{(*)}$ \in $H.$

Proof. If H is a subgroup and $a, b \in H$, then $b^{-1} \in H$, so $ab^{-1} \in H$.

Conversely, if $ab^{-1} \in H$ is satisfied, then since $H \neq \phi$, there exists $a \in H$ and we can set $b = a$ so $aa^{-1} \in H$, so $e \in H$.

If $a \in H$, since $e, a \in H$, by $(*)$, $ea^{-1} \in h \implies a^{-1} \in H$.

If $a, b \in H$, then by ii $b^{-1} \in H$, so $a, b^{-1} \in H$, so $(*)$ gives $a(b^{-1})^{-1} \in H$, so $ab \in H$ ■

1.7 Cyclic Subgroups

For group G with $a \in G$, $H = \{a^n \mid n \in \mathbb{Z}\}\subset G$. H is a subgroup:

- $\bullet \, e \in H$
- $a^n \in H$, $a^{-n} \in H$
- $a^n, a^m \in H$, $a^n a^m = a^{n+m} \in H$

We denote $H = \langle a \rangle$ where it is the subgroup generated by a, and $\langle a \rangle$ is a cyclic subgroup of G.

Note: $\langle a \rangle$ is a subset of every subgroup of G which contains a.

Example. $\mathbb{Z}_8 = \{ [0], [1], [2], ..., [7] \}.$

$$
\langle [2] \rangle = \langle [0], [2], [4], [6], [8] \rangle
$$

$$
\langle [3] \rangle = \langle [0], [3], [6], [1], [4], [7], [2], [5] \rangle = \mathbb{Z}_8
$$

$$
\langle [4] \rangle = \langle [0], [4] \rangle
$$

Example. $G = (\mathbb{Z}, +)$. $< 5 > = \{..., -10, -5, 0, 5, 10, ...\}$

Definition. $a \in G$, the **order** of $a := |< a > |$. If $< a >$ is infinite, we say a has **infinite** order.

Fact:

- If order of a is finite, then order of $a =$ smallest $n \in \mathbb{Z}$ such that $a^n = e$.
- If order of a is infinite, then $a^{n_1} \neq a^{n_2}$ if $n_1 \neq n_2$

Proof. Suppose *n* is the smallest positive integer such that $a^n = e$, $\langle a \rangle = \{e, a, ..., a^{n-1}\}\$ all distinct elements. Clearly, if $0 \leq i < j \leq n-1$ and $a^i = a^j$, then $e = a^{j-i}$, which is not possible. $\forall m \in \mathbb{Z}$, we have $m = nq + r, 0 \le r \le n - 1$, so

$$
a^{m} = a^{nq+r} = a^{r} \in \{e, a, ..., a^{n-1}\}
$$

(ii). Since $\langle a \rangle$ is infinite, there is no $n > 0$ such that $a^n = e$. Now, if $a^i = a^j$, then $a^{j-i} = e, j-i > 0$ is a contradiction.

Example.

- Order of 5 in $(\mathbb{Z}, +)$ infinite
- Order of [5] in $(\mathbb{Z}_6, +)$ is 6
- Order of [5] in $(\mathbb{Z}_{10}, +)$ is 2

G is cyclic if $G = \langle a \rangle \exists a \in G$.

Fact: Every cyclic group is abelian

Proof. If $G = \langle a \rangle$ and $g_1, g_2 \in G$, then $g_1 = a^{n_1}, g_2 = a^{n_2}$ with $n_1, n_2 \in Z$

$$
\begin{cases}\ng_1 g_2 = a^{n_1} a^{n_2} = a^{n_1 + n_2} \\
g_2 g_1 = a^{n_2} a^{n_1} = a^{n_1 + n_2}\n\end{cases}\n\implies g_2 g_1 = g_1 g_2
$$

■

Example.

- $(\mathbb{Z}, +)$ is cyclic $\mathbb{Z} = \langle 1 \rangle$.
- $(\mathbb{Z}_n, +)$ is cyclic $\mathbb{Z}_n = \langle 1] \rangle$
- $S_n, n \geq 3$ is not cyclic and not even abelian.
- $D_n, n \geq 3$ is not cyclic and not even abelian.

Theorem. Suppose G is cyclic.

- If $|G| = \infty$, then $G \simeq (\mathbb{Z}, +)$.
- If $|G| = n$, then $G \simeq (\mathbb{Z}_n, +)$.

Proof. If k is the smallest positive integer such that $a^k = e$, then $G = \{e, a, ..., a^{k-1}\}\$ If $|G| = \infty$, then there is no positive k such that $a^{\overline{k}} = e$, so $a^{n_1} = a^{n_2}$ implies $n_1 = n_2$. Thus define $\phi : \mathbb{Z} \to$ $G, n \mapsto n^{a^n}$. Clearly ϕ onto, one-to-one, and $\phi(n_1 + n_2) = a^{n_1+n_2} = a^{n_1}a^{n_2} = \phi(n_1)\phi(n_2)$. So ϕ is an isomorphism.

Otherwise if $|G| = n$, then *n* is the smallest positive integer such that $a^n = e$. Then we can define $\phi : \mathbb{Z}_n \to G$, $[i] \mapsto a^i, 0 \le i \le n-1$. ϕ onto, one-to-one. If $i + j = qn + r$, $0 \le r \le n-r$, then $\phi([i] + [j]) = \phi([r]) = a^r$ and $\phi([i])\phi([j]) = a^ia^j = a^{i+j} = a^{qn+r} = a^r$, so ϕ is an isomorphism.

Example. Let $H = \langle 1, 2 \rangle (3, 4, 5) > \langle S_5$. For what n is $H \simeq \mathbb{Z}_n$?

$$
\sigma^2 = (3,5,4), \sigma^3 = (1,2)(3,4,5)(3,5,4) = (1,2), \sigma^4 = (3,4,5), \sigma^5 = (1,2)(3,5,4), \sigma^6 = e^2
$$

Thus, $H = \langle \sigma \rangle = \{e, \sigma, ..., \sigma^5\} \simeq (\mathbb{Z}_6, +).$

Proposition. Every subgroup of a cyclic group is cyclic.

Proof. Let G be cyclic $G = \langle a \rangle$ and $H \leq G$. If $H = \{e\}$, we are done.

Let k be the smallest positive integer such that $a^k \in H$. Then, to claim $H = \langle a^k \rangle$, then first for ⊆:

$$
a^k \in H \implies a^k \geq \subseteq H
$$

For $H \subseteq \langle a^k \rangle$, suppose $a^m \in H$. Divide m by k with $m = kq + r, 0 \le r \le k - 1$. Then,

$$
a^m = a^{kq+r} = a^{kq}a^r = h \in H \implies a^r = (a^k)^{-q}h \in H
$$

Our choice of k implies $r = 0$, so $m = kq$, $a^m = a^{kq} \in \langle a^k \rangle$

Corollary. All subgroups of $(\mathbb{Z}, +)$ are of the form $\lt n > n \in \mathbb{Z}^+$

If $n, m \in \mathbb{Z}$, consider $\{rm +sn \mid r, s \in \mathbb{Z}\} \leq (\mathbb{Z}, +)$. By the corollary, there is d such that ${rm + sn | r, s \in \mathbb{Z} = < d>}$ for some positive integer $d \in \mathbb{Z}$.

Definition. The greatest common divisor of m and n, $d = gcd(m, n)$ where if m = $p_1^{a_1} \cdots p_t^{a_t}, n = p_1^{b_1} \cdots p_t^{b_t}$. Then $gcd(m, n) = p_1^{\min(a_1, b_1)} \cdots p_t^{(\min(a_t, b_t))}$.

Example. Since $gcd(8, 28) = 4$ with $(-3)8 + (1)24 = 4$, $\{8r + 28s \mid r, s \in \mathbb{Z}\}$ $\{..., -4, 0, 4, 8, ...\} = < 4$

Definition. If $gcd(m, n) = 1$, we say m and n are **relatively prime** or **coprime**. Now if $d = gcd(n, m)$, then $n = n_1 d, m = m_1 d, m, n \in \mathbb{Z}$ with $gcd(n_1, m_1) = 1$.

Corollary. m, n are relatively prime $\iff \exists r, s \in \mathbb{Z}$ such that $rn + sm = 1$.

Example. Let $G = \langle a \rangle, |G| = n, G = \{e, a, ..., a^{n-1}\}.$ Let $H \leq G, H = \langle a^m \rangle$. What is $|H|$?

We let $b = a^m$, $H = a^m$ >. Let $|H|$ = smallest positive k such that $b^k = e$. We want $(a^m)^k = e = a^{mk}$. Thus, $n | mk$ (*n* divides *mk*).

Let $d = \gcd(n,m)$ so that $n = n_1d, m = m_1d$ with $\gcd(m_1,n_1) = 1$. Then $n_1d | m_1dk \implies$ $n_1 | m_1 k \implies n_1 | k$. So smallest $k = n_1 = \frac{n}{d} = \frac{n}{gcd(n,m)}$, so $|H| = \frac{n}{gcd(n,m)}$.

In particular, $\langle a^m \rangle = G$ iff $\frac{n}{gcd(m,n)} = n \implies gcd(m,n) = 1$

Example. $G = 6, G = \{e, a, ..., a^5\}$. $|< a^> = 3, |< a^5 > | = 6$

Definition. The **generators** of G is $\{a \in G \text{ such that } G = \langle a \rangle\}$

If $|G| = n$ and $G = \langle a \rangle$, then a^m generates $G \iff \gcd(m, n) = 1$. More generally, for any $a^m \in G, |< a^m > | = \frac{n}{gcd(m,n)}$

Corollary. If G is cyclic of finite order and $H \leq G$, then $|H| \leq |G|$.

Example. Find all generators of $(\mathbb{Z}_q, +)$. $\{[1], [2], [4], [5], [7], [8]\}$

Example. $G = (\mathbb{Z}_{18}, +)$. Find a subgroup of order 6. Let $H \leq G, H = \langle m \rangle > |H|$ $18/gcd(m, 18) = 6$. Thus, we can have $m = 3, 15$.

Fact: If G is cyclic of order n, $G = \langle a \rangle$, then $\langle a^{m_1} \rangle = \langle a^{m_2} \rangle \iff \gcd(m_1, n) =$ $gcd(m_2, n)$

Corollary. If G is cyclic of order n, for any $d|n$, there is eactly one subgroup of order d in G.

Proof. If $H = \langle a^m \rangle, H = n/gcd(m, n) = d \implies gcd(m, n) = \frac{n}{d}$. For example if $m = \frac{n}{d}$, then $gcd(m, n) = gcd(\frac{n}{d}, n) = \frac{n}{d}$. $| \lt a^{\frac{n}{d}} \gt | = d$. Uniqueness follows from the above fact.

Example. Klein 4 Group

$$
\begin{array}{c|cccc}\n* & e & a & b & c \\
\hline\ne & e & a & b & c \\
a & a & e & c & b \\
b & a & c & e & a \\
c & c & b & a & e\n\end{array}
$$

$$
\langle a \rangle = \{e, a\}, \langle b \rangle = \{e, b\}, \langle c \rangle = \{e, c\}.
$$

1.8 Generators

Let $H \leq G$ and $a, b \in G$. Then $\langle a, b \rangle$ is the subgroup generated by a, b which is the set of all combinations of a, b.

Example. $ab^{-1}a^2b^3 \le a, b>, (ab^{-1}a^2b^3)^{-1} = (b^{-3}a^{-2}ba^{-1}) \le a, b>, e = a^0 \le a, b>$ In general, $\{a_i, i \in I\} \subset G$. This is the subgroup of G generated by $a_i, i \in I$.

Fact: If H_j , $j \in J$ are subgroups of G, then $\cap_{j \in J} H_j$ is a subgroup of G.

• $e \in H_j$ for all j, so $e \in \bigcap_{j \in J} H_j$.

• If $a, b \in \bigcap_{j \in J} H_j$ then $a, b \in H_j \,\forall j$, so $ab^{-1} \in H_j$ for all j. So $ab^{-1} \in \bigcap_{j \in J} H_j$

We can also consider $\langle a_i, i \in I \rangle$ the intersection of all subgroups of G which contain $a_i, i \in I$.

Proof. $\subseteq \subseteq \subseteq a_i, i \in I \geq \subseteq$ any subgroup of G which contain all the a_i .

 $\supseteq:$ $\langle a_i, i \in I \rangle$ is a subgroup of G and contains all the a_i . ■ **Definition.** If G is generated by a finite number of elements, $G = \langle a_1, ..., G_k \rangle$, then G is called finitely generated.

Example. $(\mathbb{Q}, +)$ is not finitely generated. Let $\frac{a_1}{b_1}, \dots, \frac{a_n}{b_n} \in \mathbb{Q}$, then

$$
H = <\frac{a_1}{b_1},...,\frac{a_n}{b_n}>= \{t_1\frac{a_1}{b_1}+...+t_n\frac{a_n}{b_n}; t_1,...,t_n \in \mathbb{Z}\}
$$

Let p be a prime number such that $p > b_1, ..., b_n$. Then $\frac{1}{p} \notin H$. If $\frac{1}{p} = \frac{t_1a_1}{b_1} + ... + \frac{ta_n}{b_n} =$ $\frac{A}{b_1,...b_n,A\in\mathbb{Z}}$. so $pA=b_1...b_n$ but p not divisible $b_1...b_m n$.

1.9 Dihedral Group Revisited

Diheral group D_n with $n \geq 3$, with $|D_n| = 2n$. We can have $\rho = (1, 2, ..., n)$ which is a counter-clockwise rotation by $\frac{2\pi}{n}$. μ is a reflection with respect to x-axis, such that $\mu^2 = e$. Then,

$$
D_n = \{e, \rho, \rho^2, ..., \rho^{n-1}, \mu, \mu\rho, ..., \mu\rho^{n-1}\}
$$

Note that by definition and using inversees, $\mu \rho^i = \rho^{n-i} \mu \forall 1 \leq i \leq n$.

We can also describe this as $D_n = \langle \rho, \mu \rangle$.

2 Structure of Groups

2.1 Permutation Groups

Definition. $\phi: G \to G'$ is called a **homomorphism** if $\forall a, b \in G$, $\phi(ab) = \phi(a)\phi(b)$. Example.

- $G \xrightarrow{\phi} G'$, $\phi(a) = e'$ is a homomorphism.
- $Z_n \xrightarrow{\phi} D_n$, $[i] \mapsto \rho^i$ is a homomorphism. This is one-to-one but not onto.
- $GL_2(\mathbb{R}) = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} | a, b, c, d \in \mathbb{R}, ad c \neq 0 \right\}$ group under matrix multiplication. $GL_2(\mathbb{R}) \to (\mathbb{R} - \{0\}, \cdot).$

Proposition. If ϕ : $G \rightarrow G'$ is a homomorphism, then

- 1. $\phi(e) = e'$
- 2. $\phi(a^{-1}) = \phi(a)^{-1} \,\forall a \in G$
- 3. If $H \leq G$, then $\phi(H) \leq G'$ where $\phi(H) = {\phi(a)|a \in G}$.
- 4. If $K \leq H'$, then $\phi^{-1}(K) \leq G$ where $\phi^{-1}(k) = \{a \in G | \phi(a) \in K\}$

Proof. (1).
$$
\phi(ee) = \phi(e)\phi(e)
$$
 so $e' = \phi(e)$.
(2). $\phi(a)\phi(a^{-1}) = \phi(aa^{-1}) = \phi(e) = e'$, and $\phi(a^{-1})\phi(a) = \phi(a^{-1}a) = e'$.

(2). $\phi(a)\phi(a^{-1})$ $\phi(a^{-1}) = \phi(e) = e'$, and $\phi(a^{-1})\phi(a) = \phi(a^{-1}a) = \phi(e) = e'$, so $\phi(a^{-1})$ is inverse of $\phi(a)$.

(3).
$$
H \leq G
$$
 so $e \in H$, so $\phi(e) \in \phi(H) \implies e' \in \phi(H)$.

If $x, y \in \phi(H)$, then there are $a, b \in H$ such that $\phi(a) = x$ and $\phi(b) = y$. So, $xy^{-1} =$ $\phi(a)\phi(b)^{-1} = \phi(a)\phi(b^{-1}) = \phi(ab^{-1}) \in \phi(H).$

(4). Exercise ■

Theorem. [Cayley's Theorem]

Let S_A be a group of permutations of set A. Then \forall group G, \exists set A and a one-to-one homomorphism $\phi: G \to S_A$. So, G is isomorphic to $\phi(G)$, and $\phi(G) \leq S_A$.

Example.

- $G = D_n$, $D_n \leq S_n$.
- $G = \mathbb{Z}_n$, then $\mathbb{Z}_n \to S_n$
- $G = GL_2(\mathbb{R})$. If $A \in GL_2(\mathbb{R})$ then $\mathbb{R}^2 \longrightarrow$ $\mathbb{R}^2, \left[\begin{matrix} x \\ y \end{matrix}\right]$ \hat{y} $\Big] \mapsto A \Big[\begin{matrix} x \\ y \end{matrix} \Big]$ \hat{y} is one-to-one and ontto so f_A is a permutation of \mathbb{R}^2 . In addition, $f_{AB} = f_A \circ f_B$, so $GL_2(\mathbb{R}) \xrightarrow{\phi} S_{\mathbb{R}^2}$, $A \mapsto f_A$ iss a group homomorphism. ϕ is one-to-one: If $f_A = f_B$, then $A \begin{bmatrix} x \\ y \end{bmatrix}$ \hat{y} $\Big] = B \Big[\begin{matrix} x \\ y \end{matrix} \Big]$ \hat{y} $\Big\} \forall x, y \in R$. Then $A = b$

Proof. If $g \in G$, then the function $\lambda_g : G \to G$ has $\lambda_g(x) = gx$.

 λ_g one-to-one: If $\lambda_g(x) = \lambda_g(y)$, then $gx = gy$, so $x = y$. λ_g onto: $\forall y \in g, \lambda_g(g^{-1}y) = gg^{-1}y = y$.

So, $\lambda_g \in S_G$ Note that λ_g is <u>not</u> a group homomorphism, as $gxy \neq gxy$

So, we have the map $\phi: G \to S_G, g \mapsto \lambda_g$.

Now, we want to show that ϕ is one-to-one homomorphism:

 ϕ is a homomorphism:

$$
\underbrace{\phi(g_1g_2)}_{\lambda_{g_1,g_2}(x)} = \phi(g_1) \circ \phi(g_2) \implies \lambda_{g_1,g_2}(x) = g_1g_2(x) = \lambda_{g_1}(g_2x) = \lambda_{g_1} \circ \lambda_{g_2}(x)
$$

 ϕ is one-to-one: If $\phi(g_1) = \phi(g_2)$, then $\lambda_{g_1} = \lambda_{g_2}$, so $\forall x \in G$, $\lambda_{g_1}(x) = \lambda_{g_2}(x)$, so $g_1x =$ $g_2x \implies g_1 = g_2$

Definition. Let ϕ : $G \rightarrow G'$ be a homomorphism. The **kernel** of ϕ is

$$
ker(\phi) := \{ a \in G; \phi(a) = e' \} = \phi^{-1} (\{e' \})
$$

Note that since $\{e'\}\leq G', ker(\phi)\leq G.$

Example. $\phi : \mathbb{Z} \to \mathbb{Z}_n$, $a \mapsto [\text{remainder of } n/a]$. ker $(\phi) = n\mathbb{Z}$

Proposition. ϕ one-to-one \iff ker $(\phi) = \{e\}$

Proof. \implies : Clear

 \Leftarrow : If $\phi(a) = \phi(b)$, then $\phi(a) = \phi(b)^{-1} = e'$. So $\phi(a)\phi(b^{-1}) = e' \implies \phi(ab^{-1}) = e'$, so $ab^{-1} = e \implies a = b$

2.1.1 Odd and even permutation

Definition. A 2-cycle is called a transposition

In general, if $(a_1, a_2, ..., a_{m-1}, a_m) \in S_n$, then $(a_1, a_2, ..., a_m) = (a_1, a_m)(a_1, a_{m-1})...(a_1, a_2)$.

Every $\sigma \in S_n$ is a product of transpositions that is not unique

Example. $\sigma = (1, 2, 4)(3, 6) = (1, 4)(1, 2)(3, 6)$

Theorem. If $\sigma \in S_n$, then σ cannot be written both as a product of an even number of transpositions and as a product of an odd number of transpositions.

Let $\sigma = (a_1, b_1) \dots (a_k, b_k)$. σ is an odd/even permutation if k is odd/even.

In general, ∀n, the number of odd permutations and even permutations is the same.

 $A_n :=$ set of even permutations $\subset S_n$, $B_n :=$ set of odd permutations $\subset S_n$

Proof. Let σ be any 2-cycle. Define $\lambda_{\tau}: A_n \to B_n, \sigma \mapsto \tau_{\sigma}$.

 λ_{τ} is onto and one-to-one:

Onto: If $\rho \in B_n$, then $\tau \rho \in A_n$ and $\lambda_\tau(\tau \rho) = \tau \tau$ \sum_{e} One-to-one: $\tau \sigma_1 = \tau \sigma_2 \implies \sigma_1 = \sigma_2$. Thus, $|A_n| = |B_n|$ $\rho = \rho$

Proposition. A_n is a subgroup of order $\frac{n!}{2}$ in S_n .

Proof. • $e \in A_n$

- $\sigma_1, \sigma_2 \in A_n$ ten $\sigma_1 \sigma_2 \in A_n$
- If $\sigma \in A_n$, $\sigma = (a_1, b_1) \dots (a_k, b_k)$, $\sigma^{-1} = (a_k, b) \dots (a_1, b_1) \in A_n$

 A_n is the **alternating group** on *n* elements.

If $\sigma \in S_n$, we can define

$$
sign(\sigma) = \begin{cases} 1, & \text{if } \sigma \text{ even} \\ -1, & \text{if } \sigma \text{ odd} \end{cases}
$$

 $\{1, -1\}$ is a group under multiplication.

Here, $sgn : S_n \to \{1, -1\}$ is a homomorphism with $sign(\sigma_1 \sigma_2) = sign(\sigma_1) sign(\sigma_2)$. Thus, $\ker(sgn) = A_n$

2.2 Finitely Generated Abelian Groups

Direct product of groups Let G_1, G_2 be two groups. The cartesian product of G_1, G_2 is $G_1 \times G_2$ $G_2 = \{(a_1, a_2); a_1 \in G_1, a_2 \in G_2\}$

Group operation on $G_1 \times G_2$ is defined as $(a_1, a_2)(b_1, b_2) = (a_1b_1, a_2b_2)$. Identity = (e_1, e_2) . Inverse of $(a_1, a_2) = (a_1^{-1}, a_2^{-1}).$

This ia a group, called the **direct product** of G_1, G_2 .

Example.
$$
\mathbb{Z}_2 \times \mathbb{Z}_2 = \{([0], [0]), ([0], [1]), ([1], [0]), ([1], [1])\}
$$
. Here, $a^2 = b^2 = c^2 = e$. So $Z_2 \times Z_2$ not isomorphic to \mathbb{Z}_4 .

Example. $\mathbb{Z}_2 \times \mathbb{Z}_3$:< ([1], [1]) >= {(0,0), (1,1), (0,2), (1,0), (0,1), (1,2)}. Thus $Z_2 \times Z_3$ is cyclic so $Z_2 \times Z_3 \simeq Z_6$.

Proposition. $Z_m \times \mathbb{Z}_n$ is cyclic (therefore isomorphic to \mathbb{Z}_{mn}) if and only if $gcd(m, n) = 1$.

Proof. \Leftarrow If $gcd(m, n) = 1$, then $\mathbb{Z}_m \times \mathbb{Z}_n = \langle [1], [1] \rangle \rangle$.

If order of $([1], [1])$ is k,then $([k], [k]) = ([0], [0])$, so $m \mid n$ and $n \mid k$. Since $gcd(m, n) = 1$, we get $nm \mid k$ so $k \geq mn \implies$ order of $([1],[1]) = mn$, so $([1],[1])$ generates the group.

" \implies ": If $gcd(m, n) = d > 1$, then if $([a], [b]) \in \mathbb{Z}_n \times \mathbb{Z}_m$,

$$
\frac{nm}{d}([a],[b]) = ([\frac{anm}{d},\frac{bnm}{d}]) = ([0],[0])
$$

and $\frac{nm}{d} < nm$, so G is not generated by only $([a],[b])$ so G is not cyclic.

More generally, for $G_1, ..., G_k$, the direct product is

$$
G_1 \times \ldots \times G_k = \{(a_1, ..., a_k) | a_i \in G_i, 1 \le i \le k\}
$$

■

with natural rules of operations, identity, and inverses. Then, $\mathbb{Z}_{n_1} \times \ldots \times \mathbb{Z}_{n_k} \simeq \mathbb{Z}_{n_1...n_k}$ if $gcd(n_i, n_j) = 1 \forall i \neq j.$

Proposition.

- $G_1 \times G_2 \simeq G_2 \times G_2$. $\phi: G_1 \times G_2 \to G_2 \times G_1$, $(a, b) \mapsto (b, a)$ is an isomorphism.
- If $H_1 \leq G_1$ and $H_2 \leq G_2$, then $H_1 \times H_2 \leq G_1 \times G_2$.

Example. $\mathbb{Z}_2 \times \mathbb{Z}_2$. $H = \{([0], [0]), ([1], [1])\} \leq \mathbb{Z}_2 \times \mathbb{Z}_2$ is not of the form $H_1 \times H_2$

Proposition. $\mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2} \times \ldots \times \mathbb{Z}_{n_k}$ is cyclic if and only if $gcd(n_i, n_j) = 1, i \neq j$

2.3 More on Finitely Generated Abelian Groups

Theorem. Every finitely generated abelian group is isomorphic to

$$
\mathbb{Z}_{p_1^{n_1}} \times \mathbb{Z}_{p_2^{n_2}} \times \ldots \times \mathbb{Z}_{p_k^{n_k}} \times \underbrace{\mathbb{Z} \times \ldots \times \mathbb{Z}}_{m \text{ times}}
$$

where p_i are prime numbers, $n_i \geq 1$ where p_i not necessarily distinct.

Example. Find, up to isomorphism, all abelian groups of order 72.

Notice that abelian groups of order 8 are $\mathbb{Z}_8, \mathbb{Z}_2 \times \mathbb{Z}_4, \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$. Abelian grous of order 9 up to isomorphism are \mathbb{Z}_9 , $\mathbb{Z}_3 \times \mathbb{Z}_3$. Thus, there are $3 \times 2 = 6$ groups.

Corollary. if G is abelian of order n and $m \mid n$ then G has a subgroup of order m. Then G has a subgroup of order m.

Remark: You can show that A_4 has no subgroup of order 6.

Proof. If $G = \langle a \rangle$ is cyclic with $|G| = n, m | n$,

$$
||=\frac{n}{gcd(\frac{n}{m},n)}=\frac{n}{\frac{n}{m}}=m
$$

If G is arbitrary by the theorem but abelian, $G = \mathbb{Z}_{p_1^{n_1}} \times \ldots \times \mathbb{Z}_{p_k}^{n_k}$, then $m = p_1^{m_1} \ldots p_k^{m_k}$.

Since $\mathbb{Z}_{p_i^{n_i}}$ cyclic, and since $p_i^{m_i} | p_i^{n_i}, \mathbb{Z}_{p_i^{n_i}}$ has a subgroup H_i of order $P_i^{m_i}$. Then $H_1 \times \ldots \times H_k \le$ G and has order $P_1^{m_1} \times \ldots \times P_k^{m_k} = m$.

2.4 Cosets

Let $H \leq G$. We say $a \sim b$ if and only if $a^{-1}b \in H$

- Reflexive: $a^{-1}a = e \in H$
- Symmetric: $a^{-1}b \in H \implies (a^{-1}b)^{-1} = b^{-1}a \in H$
- Transitive: $a^{-1}b, b^{-1}c \in H \implies ac^{-1} \in H$

So, we get a partition of G as the disjoint union of equivalence class.

Definition. Let $a \in G$. The equivalence class containing a is aH, the **left coset** of H is:

$$
\{x \in G | a \sim x\} = \{x \in G | a^{-1}x = h \in H\} = \{x \in G | x = ah, h \in H\} = aH
$$

Example. $G = S_3 = \{e, (1, 2), (1, 3), (2, 3), (1, 2, 3), (1, 3, 2)\} = \{e, \tau_1, \tau_2, \tau_3, \sigma, \sigma^2\}$ Here, $H = \{e, \sigma, \sigma^2\} \leq S_3$. Then, the left cosets of H are

- $eH = \sigma H = H = \sigma^2 H = {\sigma^2, e, \sigma} = H$
- $\bullet \ \ \tau_1H=\{\tau_1,\tau_1\sigma,\tau_1\sigma^2\}=\{\tau_1,\tau_2,\tau_3\}=\tau_2H=\tau_3H$

Proposition.

- $aH = bH \iff a \sim b$
- $a \in aH$
- $aH = H \iff a \in H$
- aH is a subgroup of $G \iff aH = H$

Proof. If $aH \leq G, e \in aH$. So $e = ah \implies a^{-1} \in H \implies a \in H$, so $a \in H \implies ah = H$

Example. Let $G = (\mathbb{Z}, +)$. $H = \langle 5 \rangle = \{5n | n \in \mathbb{Z}\}\$. All the left cosets of H can be given by

- $0 + H = \{5n | n \in \mathbb{Z}\} = 5 + H$
- $1 + H = \{5n + 1 | n \in \mathbb{Z}\} = 6 + H$
- $2 + H = \{5n + 2 | n \in \mathbb{Z}\} = 7 + H$
- $3 + H = \{5n + 3|n \in \mathbb{Z}\} = 8 + H$
- $4 + H = \{5n + 4 | n \in \mathbb{Z}\} = 9 + H$

Example. Let $G = (\mathbb{R}, +), H = (\mathbb{Z}, +) \leq G$. The left coset can be given by $r + \mathbb{Z}, r \in \mathbb{R}$. In this case, there are infinitely many distinct left cosets where $0 < x < y < 1$, $x + \mathbb{Z} \neq y + \mathbb{Z}$.

Theorem.

- 1. If $H \leq G$, $|H| = m$, then every left coset of H has m elements.
- 2. [Lagrange's Theorem] If $H \leq G$ and $|G| = n$, then $|H| |G|$

Proof. (1) Let aH be a left coset, then $\phi : H \to aH, h \mapsto ah$ clearly shows ϕ is one-to-one and onto. $ah_1 = ah_2 \implies h_1 = h_2$. Thus, $|H| = |aH|$.

(2) Let $H = m$ and suppose H has r distinct left cosets $a_1H, ..., a_rH$. Then, $|a_iH| = |H| = m$ and $G = \bigcup_{i=1}^{r} a_i H$. So, G \sum_{n} $=\sum_{i=1}^{n} |a_i H| = rm$, so m $\mid n.$

Corollary. If $|G| = n$ and $a \in G$, then order of a divides n

Proof. Let
$$
m = ord(n)
$$
 and $H = - {e, a, ..., a^{m-1}}$. *Some* = |H| | |G| = n

Corollary. If $|G| = p$ where p is a prime number, then G is cyclic.

Proof. Pick $e \neq a \in G$, then $1 \neq ord(a) | p$, so $ord(a) = p, | \langle a \rangle | = p \implies \langle a \rangle = G$.

Definition. If $H \leq G$, the number of distinct left cosets of H in G is denoted by $(G : H)$. the **index** of H in G .

If G is a finite group $(G: H) = \frac{|G|}{|H|}$.

2.4.1 Right Cosets

We can have similar definitions with right cosets. For $H \leq G$,

$$
a \sim' b \iff ba^{-1} \in H
$$

Equivalence class containing $a = \{x \in G \mid a \sim' x\} = \{x \in G \mid xa^{-1} \in H\} = \{x \in G \mid xa^{-1} = \emptyset\}$ $h \forall h \in H$ } = { $x \in G | x = h a \forall h \in H$ } = Ha

Proposition.

- $Ha = H \iff a \in H$
- $Ha = Hb \iff ab^{-1} \in H$
- $Ha = Hb$, $Ha \cap Hb = \emptyset \forall a, b \in G$
- $Ha \leq G \iff a \in H$
- If $|H| < \infty$, then $|Ha| = |H|$.

Example. $S_3 = \{e, \tau_1, \tau_2, \tau_3, \sigma, \sigma^2\}$. $H \leq S_3$, $H = \{e, \tau_1\}$

All right cosets can be given by

- $He = \{e, \tau_1\}$
- $H\tau_1 = {\tau_1, e}$
- $H\tau_2 = {\tau_2, \sigma^2}$
- $H\tau_3 = {\tau_3, \sigma}$
- $H\sigma = {\tau_3, \sigma}$
- $H\sigma^2 = \{\sigma^2, \tau_2\}$

Example. $G = S_3$, $H = \{e, \sigma, \sigma^2\} \leq S_3$.

Left Cosets:

- $eH = \sigma H = \sigma^2 H = H$
- $\tau_1 H = \tau_2 H = \tau_3 H = \{\tau_1, \tau_2, \tau_3\}$

Right Cosets:

- $He = H\sigma_1 = H\sigma^2 = H$
- $H\tau_1 = H\tau_2 = H\tau_3 = {\tau_1, \tau_2, \tau_3}.$

In this specific case, every left coset is a right coset.

Example. $H = 5\mathbb{Z} \leq \mathbb{Z}$. Left cosets of H are given by $5\mathbb{Z}, 1 + 5\mathbb{Z}, 2 + 5\mathbb{Z}, 3 + 5\mathbb{Z}, 4 + 5\mathbb{Z}$. The right cosets are $5\mathbb{Z}, 5\mathbb{Z}+1, 5\mathbb{Z}+2, 5\mathbb{Z}+3, 5\mathbb{Z}+4.$

Example. If $H \leq G$ and G is abelian, then

$$
aH = Ha \,\forall a \in G
$$

3 Homomorphisms and Factor Groups

3.1 Factor Group

Definition. A subgroup H of G is called a **normal** subgroup if $aH = Ha$ for every $a \in G$, denoted as $H \trianglelefteq G$.

Example.

- $\{e, \sigma, \sigma^2\} \triangleleft S_3$
- $\{e, \tau_1\} \ntrianglelefteq S_3$
- $A_n \trianglelefteq S_n$
- Every subgroup of an abelian group is normal.
- If G is finite and $H \leq G$ is of index 2, then H is normal.

Proof. For aH if $a \in H$, $aH = Ha = H$. Otherwise if $a \notin H$, then $aH \cap H = \emptyset$, $|aH| = |H|$ $|G|$ $\frac{|G|}{2}$. Also, $Ha \cap H = \emptyset$, $|Ha| = |H| = \frac{|G|}{2}$ $\frac{G|}{2}$, so $Ha = \{b \in G | b \notin H\} = Ha$ ■

Proposition. If ϕ : $G \to G'$ is a homomorphism, then ker $(\phi) \leq G$.

Proof. Prove that for $a \in G$, $a \text{ ker}(\phi) = \text{ker}(\phi)a$, where $\text{ker}(\phi) = \{b \in G | \phi(b) = e'\}$ \subseteq : If $b \in \text{ker}(\phi)$, then $\phi(aba^{-1}) = \phi(a)\phi(b)\phi(a^{-1}) = e'$. So, $aba^{-1} \in \text{ker}(\phi)$, let $b' = aba^{-1} \in \text{ker}(\phi)$, then $ab = b'a \in \text{ker}(\phi)a$. The \supseteq direction is ′ similar ■

Example. $\phi: S_n \to \{1, -1\}, \phi(\sigma) = sgn(\sigma), \ker(\phi) = A_n.$ **Proposition.** H is normal $\iff aHa^{-1} = H$ for all $a \in G$.

Proof. \Longleftarrow : If $a \in \text{,we show } aH = Ha$. $aH \subseteq Ha$: If $h \in H$, then $ah^{-1}a \in H$, so $aha^{-1} = h'$ for some $h' \in H$. So, $ah = h'a$ \implies $ah \in Ha$ $Ha \subseteq aH$: If $h \in H$, then $a^{-1}Ha = H$ by assumption so $a^{-1}ha = h^{-1} \in h$ \Longrightarrow : Exercise

Proposition. H is normal in $G \iff aHa^{-1} \subset H$ for every $a \in G$. (This is an alternative to the proposition above)

Proof. \implies : clear

 \Leftarrow We show $H \subset aHa^{-1}$ for every $a \in G$. We have $a^{-1}H(a^{-1})^{-1} \subset H$, so $a^{-1}Ha \subseteq H$. So for any $h \in H$, $a^{-1}ha = h' \in H$. So $h = ah'a^{-1} \implies h \in aHa^{-1}$. \blacksquare

Remark: $aHa^{-1} \leq G$ for any $a \in G$.

• $e = aea^{-1} \in aHa^{-1}$

- If $aha^{-1} \in aHa^{-1}$, then $(aha^{-1})^{-1} = ah^{-1}a^{-1} \in aHa^{-1}$.
- If ah_1a^{-1} , $ah_2a^{-1} \in aHa^{-1}$, then $(ah_1a^{-1})(ah_2a^{-1}) = a(h_1h_2)a^{-1} \in aHa^{-1}$.

For $5\mathbb{Z} \leq \mathbb{Z}$, with left cosets $a = \{5\mathbb{Z}, 5\mathbb{Z} + 1, 5\mathbb{Z} + 2, 5\mathbb{Z} + 3, 5\mathbb{Z} + 4\}$. Here, the group operation on A is $(a + 5\mathbb{Z}) \times (b + 5\mathbb{Z}) = (a + b) + 5\mathbb{Z}$. But can we always do this:

 $H \leq G$. Let A be set of left cosets of H in G, such that $(aH)(bH) = abH$? Is this a group operation?

- Associativity: $(aHbH)cH = abHcH = (ab)cH = a(bc)H = (aH)(bcH) = aH(bHcH)$. This works.
- Identity: $(eH)(aH) = eaH = aH$
- Inverse: $(a^{-1}H)(aH) = (aH)(a^{-1}H) = eH$

However, this is not a group operation because this may not be well defined.

From previous sections, we had left cosets of $H = \{e, \tau_1\} \leq S_3$:

- $eH = \tau_1 H = H = \{e, \tau_1\}$
- $\tau_2 H = \sigma H = \{\tau_2, \sigma\}$
- $\tau_3 H = \sigma^2 H = {\tau_3, \sigma^2}.$

Here, $(\tau_2 H)(\tau_2 H) = \tau_2^2 H = eH = H$ but $(\sigma H)(\sigma H) = \sigma^2 H \neq H$, while $\tau_2 H = \sigma H$

Definition. An operation if well-defined if $aH = a'H$ and $bH = b'H \implies abH = a'b'H$ Fact: If $H \leq G$, then the operation

$$
(aH)(bH) = (ab)H
$$

is well defined (and therefore is a group operation on the set of left cosets of H) if and only if $H \trianglelefteq G.$

Proof. First, suppose $H \subseteq G$. If $aH = a'H$ and $bH = b'H$, then $a^{-1}a', b^{-1}b' \in H$. We want to show that $abH = a'b'H$ (or therefore, $b^{-1}a^{-1}a'b' \in H$.)

Let $h_1 = a^{-1}a', h_2 = b^{-1}b'$. Then $b^{-1}a^{-1}a'b' = b^{-1}h_1b' = b^{-1}h_1bh_2 = (b^{-1}h_1b)h_2 \in H$, so $abH = a'b'H.$

Next, suppose the operation is well-defined. To show $H \leq G$, we show $aha^{-1} \in H$ for every $a \in G, h \in H$.:

We have $hH = eH, a^{-1}H = a^{-1}H$. So,

$$
(hH)(a^{-1}H) = (eH)(a^{-1}H) \implies (ha^{-1})H = a^{-1}H \implies (a^{-1})^{-1}ha^{-1} \in H \implies ah^{-1}a \in H
$$

Definition. If $H \subseteq G$, operation $(aH)(bH) = abH$ on the set of left cosets is a group operation, denoted as G/H , the factor group of G by H.

Example. $5\mathbb{Z} \leq \mathbb{Z}$ then $\mathbb{Z}/5\mathbb{Z} \simeq \mathbb{Z}_5$

Proposition.

1. If $N \leq G$, then there is a natural onto homomorphism $\phi : G \to G/N$, $\phi(a) = aN$, where

$$
\ker \phi = \{ a \in G | \phi(a) = N \} = \{ a \in G | aN = N \} = N
$$

Corollary. Converse of Lagrange's Theorem is not true. For example, A⁴ has no subgroup of order 6.

Proof. If H is a subgroup of order 5 in A_4 , then $(A_4 : H) = 2$. So H is normal. If we look at the factor grouo A_4/H , $|A_4/H| = 2 \implies \forall \sigma \in A_4$, $(\sigma H)(\sigma H) = eH \in A_4/H$. Hence $\sigma^2 H = H$, so $\sigma^2 \in H \,\forall \sigma \in A_4$. However, in A_4 , $|H| \geq 8$ so this is not possible.

Proposition. If ϕ : $G \rightarrow G'$ is a homomorphism, then

 $G/\ker \phi \simeq im(\phi)$

 $(\ker(\phi) \trianglelefteq G, im(\phi) = \phi(G) \leq G')$

Proof. Define ψ : $G/\text{ker}(\phi) \to im(\phi)$ by $\psi(a \text{ker}(\phi)) = \phi(a)$. This is well-defined because if $a \ker \phi = b \ker \phi$, then $a^{-1}b \in \ker(\phi) \implies \phi(a^{-1}b) = e' \implies \phi(a)^{-1}\phi(b) = e'$, so $\phi(b) = \phi(a)$.

 ψ is clearly a homomorphism: $\psi(a \ker(\phi)) = \psi(ab \ker(\phi)) = \phi(ab) = \phi(a)\phi(b) =$ $\psi(a \ker(\phi))\psi(b \ker(\phi)).$

Then, ψ onto: For any $\phi(a)$, $\psi(aN) = \phi(a)$. Meanwhile ψ one-to-one: If $\psi(a \ker \phi) = \psi(b \ker \phi)$, then $\phi(a) = \phi(b) \implies \phi(a^{-1}b) = e'$, so $a^{-1}b \in \text{ker }\phi \implies a \text{ ker }\phi = b \text{ ker }\phi$.

Example. If $\phi: G \longrightarrow G'$ is a homomorphism which is not trivial (not every $g \in G$ is sent to e') with $|G'| = 15$, $|G| = 18$, what is $|\ker \phi|$?

Known: $18 = |G|/|\ker(\phi)| = |im(\phi)|$

Example. Factor groups:

- $G/G \simeq \{e\}$
- $G/\{e\} \simeq G$
- $\mathbb{Z}/n\mathbb{Z} \simeq \mathbb{Z}_n \cdot \phi : \mathbb{Z} \longrightarrow \mathbb{Z}_n \implies \mathbb{Z}/\ker \phi \simeq im(\phi) \implies \mathbb{Z}/n\mathbb{Z} \simeq \mathbb{Z}_n$.
- $\mathbb{Z} \times \mathbb{Z} / \langle (1,1) \rangle$

For group G with $N \triangleleft G$, the group structure of G/N is $aNbN = abN$. The order is $|G/N|$ $(G: N)$, the index of N with G.

Example. $\mathbb{Z}_{12}/\langle[4]\rangle$ has $\mathbb{Z}_{12}/\langle[4]\rangle = \frac{12}{3} = 4$. Here, the order is not 2 so \mathbb{Z}_{12}/N is not $\mathbb{Z}_2 \times \mathbb{Z}_2$, and $\mathbb{Z}_{12}/N \sim \mathbb{Z}_4$.

Proposition. If G is cyclic and $N \leq G$, then G/N is cyclic.

Proof. If $G = \langle a \rangle$, then show that G/N is generated by aN. If bN is given, then $b = a^m$ for some m, so $bN = a^mN = (aN)$ m .

Example. $\mathbb{Z} \times \mathbb{Z}/\langle (1,1) \rangle \simeq \mathbb{Z}$. Then, $(a_1, b_1) \sim (a_2, b_2) \iff a_1 - a_2 = b_1 - b_2$.

To show this, define $\phi : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ by $\phi(a, b) = a - b$. Then, since

- ϕ is homomorphism
- ϕ onto: If $n \in \mathbb{Z}$, then $\phi(n, 0) = n$.
- ker $\phi = \{(a, b) | a b = 0\} = \langle (1, 1) \rangle$

Together, this implies that $\mathbb{Z} \times \mathbb{Z}/\langle (1,1) \rangle \simeq \mathbb{Z}$, where ker $\phi = \langle (1,1) \rangle$, im(ϕ) = \mathbb{Z} .

Example. $\mathbb{Z} \times \mathbb{Z}/\langle (2,1) \rangle \simeq \mathbb{Z}$.

Notice that $G = \{\frac{a}{2} | a \in \mathbb{Z}\}\leq \mathbb{Q}$. Then we can define $\psi : G \to \mathbb{Z}, g \mapsto 2g$ as a homomorphism that is clearly one-to-one and onto. Thus, ψ is clearly an isomorphism.

Then, define $\phi : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ such that $\phi((a, b)) = a - 2b$. Then,

- \bullet ϕ homomorphism
- ϕ onto: If $n \in \mathbb{Z}, \phi((n, 0)) = n$.
- ker $\phi = \{(a, b) | a 2b = 0\} = \langle (2, 1) \rangle$

Together, this implies $\mathbb{Z} \times \mathbb{Z}/\langle (2,1) \rangle \simeq \mathbb{Z}$.

Example. $\mathbb{Z} \times \mathbb{Z}/\langle (2,2) \rangle \simeq \mathbb{Z} \times \mathbb{Z}_2$.

Define $\phi((a, b)) = (a - b, 0)$ if a even and $(a - b, 1)$ is a is odd. Then,

- ϕ homomorphism
- ϕ onto: If $(n, 0) \in \mathbb{Z} \times \mathbb{Z}_2$, then $\phi(2n, n) = (n, 0)$. If $(n, 1) \in \mathbb{Z} \times \mathbb{Z}_2$, then $\phi(2n+1, n+1) =$ $(n, 1)$.
- ker $\phi = \{(a, b) | a b = 0, a \text{ even}\} = \langle (2, 2) \rangle$.

3.2 Simple Group

Definition. A group G is simple if G has no proper, non-trivial normal group.

Example. Any finite group of order is simple.

Example. A_n for $n \geq 5$ is simple.

3.2.1 Center of Groups

Definition. We define for a group G its center as

$$
Z(G) := \{ z \in G \mid zg = gz \,\forall g \in G \}
$$

Proposition. $Z(G)$ is a normal subgroup of G.

Proof. First, Show $Z(G)$ is a subgroup:

- $eg = qe \forall q \in G \implies e \in Z(G)$
- $z_1, z_2 \in Z(G) \implies z_1z_2q = z_1qz_2 = qz_1z_2$, so $z_1z_2 \in Z(G)$.
- If $z \in Z(G)$, $zg^{-1} = g^{-1}z \forall g$, so $(zg^{-1}) = (g^{-1}z)^{-1} \implies gz^{-1} = z^{-1}g \implies z^{-1} \in Z(g)$

Then, to show $Z(G) \trianglelefteq G$: If $g \in G$, $z \in Z(G)$, then $gzg^{-1} = gg^{-1}z = z \in Z(G)$.

Proposition. Group G is abelian $\iff Z(G) = G$. **Example.** $Z(GL_n(\mathbb{R})) = \{rI_n | r \in \mathbb{R}\}\)$

3.2.2 Commutator of Groups

Definition. Let G be a group with $a, b \in G$. Then the **commutator** of a, b is defined as

$$
[a, b] = aba^{-1}b^{-1}
$$

Properties:

- $[a, b] = e \iff ab = ba$
- $[a, b]^{-1} = (aba^{-1}b^{-1})^{-1} = bab^{-1}a^{-1} = [b, a]$

Definition. The **commutator subgroup** G' is the subgroup generated by all commutators

$$
G' = \langle [a, b] | a, b \in G \rangle = \{ [a_1, b_1], ..., [a_n, b_n] \}
$$

Proposition. $G' \trianglelefteq G$

Proof. To show $g[a, b]g^{-1} \in G$,

$$
g[ab]g^{-1} = gaba^{-1}b^{-1}g^{-1} = gag^{-1}gbg^{-1}ga^{-1}g^{-1}g^{-1}g^{-1} = [gag^{-1}, gbg^{-1}] \in G'
$$

Proposition. G/G' abelian

Proof. The is to prove $aG'bG' = bG'aG'$.

$$
b^{-1}a^{-1}ba = [b^{-1}, a^{-1}] \in G' \implies (ab)^{-1}(ba) \in G' \implies abG' = baG'
$$

■

Proposition. If $N \leq G$ and G/N abelian, $G' \leq N$.

Exercise: Let $G = S_3$. What is G' ?.

We know A_3 has index 2 in S_3 , so $A_3 \leq S_3$, and S_3/A_3 has two elements so $S_3/A_3 \simeq \mathbb{Z}_2$, so it is abelian, so $G' \leq A_3$.

Check other side, then we get $G^\prime=A_3$

3.3 Groups Acting on Sets

Definition. Let G be a group acting on sets. Then a set X is a G -set or G acts on X if there is a function

$$
G \times X \longrightarrow X, \qquad (g, x) \mapsto g \cdot x
$$

such that

- $e \cdot x = x \forall x \in X$
- $g_2 \cdot (g_1 \cdot x) = (g_2 g_1) \cdot x \forall x \in X, g_1, g_2 \in G.$

Proposition. If X is a G-set, then the function $\sigma_q : X \to X$, $\sigma_q(X) = g \cdot x$ is one-to-one and onto. Thus, σ_g is permutation of X, where $\sigma_g \in S_x$.

Proof. 1-to-1: If $g \cdot x = g \cdot y$, then $g^{-1} \cdot (g \cdot x) = g^{-1} \cdot (g \cdot y) \implies e \cdot x = e \cdot y \implies x = y$. Onto: If $y \in X$, then let $x = g^{-1} \cdot y \in X$. Then, $g \cdot x = g \cdot (g^{-1} \cdot y) = e \cdot y = y$.

Proposition. The function $\phi: G \to S_X$, $\phi(g) = \sigma_g$ is a group homomorphism.

Proof. If $g_1, g_2 \in G$, $\phi(g_1g_2)(x) = \sigma_{g_1, g_2}(x) = (g_1 \cdot g_2) \cdot x = g_1 \cdot (g_2 \cdot x)$.

Also, $(\phi(g_1)\cdot\phi(g_2))(x) = \phi(g_1)(\phi(g_2)\cdot x) = g_1 \cdot (g_2 \cdot x)$. They are equal and form a homomorphism. ■

Example.

- Let $G = GL_n(\mathbb{R}), X = \mathbb{R}^n$. If $A \in GL_n(\mathbb{R}), v \in \mathbb{R}^n$ then we can define group action $A \cdot v = Av$ so that $I \cdot v = v \forall v$, $(AB)v = A(Bv)$.
- Trivial action: For some groups $G, X, q \cdot x = x, \forall q \in G, x \in X$
- S_n acting on $\{1, ..., n\}$ is a group action.
- Group G acting on itself by multiplication is a group action: $X = G, g \cdot x := gx$. Then, $e \cdot x = ex = x$ and $(g_1g_2)x = g_1(g_2x)$.
- Group G acting on itself by conjugation is a group action: $X = G, g \cdot x := gxg^{-1}$. Then, $e \cdot x = exe^{-1} = x$. Meanwhile, $(g_1g_2) \cdot x = g_1g_1x(g_1g_2)^{-1} = g_1g_2xg_2^{-1}g_1^{-1}$ and $g_1 \cdot (g_2 \cdot x) = g_1 \cdot (g_2 x g_2^{-1}) = g_1 g_2 x g_2^{-1} g_1^{-1}$. Thus they are equal.

Definition. Let G act on X then for any $x \in X$, we define the **isotropy group** as

$$
G_x := \{ g \in G \mid gx = x \}
$$

Proposition. If X is a G-set, then $\forall x \in X, G_x \leq G$.

Proof. • $e \in G_x : ex = x$

• If $g_1, g_2 \in G_x$, then $g_1x = x, g_2x = x \implies (g_1g_2)x = g_1(g_2x) = g_1x = x \implies g_1g_2 \in G$.

■

• If $g \in G_x$, then $gx = x$. Then $g^{-1}gx = g^{-1}x \implies g^{-1}x = x \implies g^{-1} \in G_x$.

Definition. [Orbit] If G acts on X and $x \in X$, then orbit of X is

$$
Gx := \{ gx \mid g \in G \} \subset X
$$

Proposition. If x and y are in the same orbit, we write $x \sim y$. In fact, this is an equivalence relationship, where $y = qx\exists q \in G$

- $x \sim x : x = e x$
- $x \sim y \implies y \sim x : y = gx \implies g^{-1}y = g^{-1}gx = x$, so $y \sim x$
- Transitive: If $y = gx, z = g'y$, then $z = g'gx = (g'g)x \implies z \sim x$.

Theorem. If G acts on X and $x \in X$, then

$$
|Gx| = (G:G_x)
$$

where Gx is the orbit of x and $(G: G_x)$ is the number of left cosets of G_x .

Proof. Define ϕ : cosets of G_x in $G \longrightarrow G_x$, where $\phi(aG_x) = a \cdot x$, $a \in G$.

- ϕ well-defined: $aG_x = bG_x \implies a^{-1}b \in G_x \implies a^{-1}bx = x \implies ax = bx$.
- ϕ is 1-to-1: $bx = ax \implies a^{-1}bx = x \implies ab^{-1} \in G_x \implies bG_x = aG_x$.
- ϕ onto: $\phi(aG_x) = ax$

Thus, $(G : G_x) = |G_x|$

Definition. For group G acting on X, define $X_G := \{x \in X \mid g \cdot x = x \forall g \in G\} \subseteq X$. Note that $x \in X_G$ iff the orbit of x has only one element.

Theorem. If G is a group with $|G| = p^n$ for prime p and X is a G-set, then

$$
|X| \equiv |X_G| \mod p
$$

Proof. Let $Gx_1, ..., Gx_r$ be all distinct orbits with more than one element. then,

$$
|X| = |X_G| + \sum_{i=1}^r |Gx_i| = |X_G| + \sum_{i=1}^r (G : G_{x_i})
$$

Recall that $|Gx_i| > 1$ and G is finite, so $(G:G_{x_i}) = \frac{|G|}{|G_{x_i}|} = \frac{p^n}{|G_x|}$ $\frac{p^{\alpha}}{|G_{x_i}|} > 1 \implies |G_{x_i}|$ is a multiple of p.

Then, $p | (G : G_{x_i}) \forall 1 \leq i \leq r \implies p | \sum_{i=1}^r (G : G_{x_i}) \implies |X| \equiv |X_G| \mod p$

Example. Suppose D_4 is acting on $\{1, 2, 3, 4\}$. $|D_4| = 8$ and $p = 2$. This means that $|X|, |X_G|$ must be both odd or both even.

Example. If \mathbb{Z}_{11} is acting nontrivially on X and X and $|X| = 20$, what is $|X_G|$? Since action is non-trivial, $|X_G| \neq 20$ so it has to be the case that $|X_G| = 9$.

Theorem. [Cauchy's Theorem] If $p \mid |G|$, then G has a subgroup of order p, equivalently G has an element of order p.

Proof. Let $X = \{(g_1, ..., g_p) | g_1, ..., g_p \in G, g_1...g_p = e\}$. Then $|X| = ||G| \times ... \times |G| =$ $|G|^{p-1} \implies p | |x|.$

Then, let $G = \mathbb{Z}_p$ act on X by shifting so that $i \cdot (g_1, ..., g_p) = (g_{i+1}, ..., g_i)$. To verify that this is a group action, $0 \cdot (g_1, ..., g_p) = (g_1, ..., g_p)$ and $(i + j) \cdot (g_1, ..., g_p) = i \cdot (j \cdot (g_1, ..., g_p))$.

Since $|G| = |\mathbb{Z}_p| = p$, we get $|X| \equiv |X_G| \mod p$, where

$$
X_G = \{(g_1, ..., g_p) \in X \mid i \cdot (g_1, ..., g_p) = (g_1, ..., g_p), 0 \le i \le p - 1\} = \{(a, ..., a) \mid a^p = e\}
$$

Since $p \mid |X|$, we have $p \mid |X_G| \implies |X_G| \geq p$, so $\exists (a, ..., a) \in X_G, a^p = e, a \neq e$.

Remark:

- 1. If G is abelian and $m \mid |G|$, then G has a subgroup of order m.
- 2. $|A_4| = 12$, but A_4 has no subgroup of order 6.
- 3. If $p = 2$, then any group with even number of elements has an element of order 2, and $a^2 = e \implies a = a^{-1}$

Corollary. If $|G| = p^n$ with p prime, then $Z(G) \neq \{e\}.$

Proof. Let $X = G$ and let G act on X by conjugation: $g \cdot x = gxg^{-1}$.

$$
X_G = \{ x \in X \mid g \cdot x = x \forall g \} = \{ x \in G \mid gxg^{-1} = x \forall g \in G \} = \{ x \in G \mid gx = xg \} = Z(G)
$$

Then by theorem,

$$
\begin{cases} |X| \equiv |X_G| \mod p \\ p \mid |X| \end{cases} \implies \begin{cases} p \mid |X_G| \\ e \in X_G, \text{ so } 1 \le |X_G| \end{cases} \implies |X_G| \ge p, \text{ so } Z(G) \ne \{e\}
$$

■

Corollary. If $|G| = p^2$, then G is abelian. So, $G \simeq \mathbb{Z}_{p^2}$, or $\mathbb{Z}_p \times \mathbb{Z}_p$.

Proof. From previous corollary, it is clear that $|Z(G)| > 1$. Since $Z(G) \leq G$, $|Z(G)| \mid p^2 \implies$ $|Z(G)| = p$ or $|Z(G) = p^2$ | ■

4 Rings and Fields

4.1 Rings and Fields

Definition. A ring is a set R with 2 binary operations $+(addition)$ and $-(multiplication)$, denoted as $(R, +, \cdot)$ such that

- $(R, +)$ is an abelian group, with identity 0.
- $\bullet\,$ \cdot is associative
- Distributivity holds: $(a + b) \cdot c = a \cdot c + b \cdot c$ and $a \cdot (b + c) = a \cdot b + a \cdot c$

Example.

- $(\mathbb{Z}, +, \cdot), (\mathbb{Q}, +, \cdot), (\mathbb{R}, +, \cdot)$ are rings.
- $(M_n(\mathbb{R}), +, \cdot)$ is a ring.
- $(2\mathbb{Z}, +, \cdot)$ is a ring.
- $(\mathbb{Z}_n, +, \cdot)$ is a ring with \cdot operation being $[a] \cdot [b] =$ [remainder of ab].

Properties of Rings.

$$
1. \ 0 \cdot a = a \cdot 0 = 0
$$

- 2. $(-a) \cdot b = a \cdot (-b) = -(ab)$
- 3. $(-a)(-b) = ab$

Proof. (1). $0 \cdot a = (0+0) \cdot a \implies 0 = 0 \dot{a}$.

- (2). $(-a) \cdot b + a \cdot b = (a a) \cdot b = 0 \implies (-a) \cdot b = -(a \cdot b)$
- (3). $(-a)(-b) = -(-ab) = ab$

Definition. Let $(R, +, \cdot)$ be a ring. Then

- *R* is a commutative ring if $ab = ba \forall a, b$
- R is a ring with unity if it has a multiplicative identity, where $a1 = 1a = a \forall a$
- R is a division ring if R has unity and every non-zero a has a multiplicative inverse, where $a \neq 0 \in R \implies \exists b \in R$ such that $ab = ba = 1$
- R is a Field if it is a commutative division ring.

Example.

- Commutative Ring: $(\mathbb{Q}, +, \cdot)$ is commutative but $(M_n(\mathbb{R}), +, \cdot)$ is not.
- Ring with Unity: $(M_n(\mathbb{R}), +, \cdot)$ has unity but $(\mathbb{Z}_2, +, \cdot)$ has no unity.
- Division Ring: $(\mathbb{Q}, +, \cdot)$ is a division ring but $(\mathbb{Z}, +\cdot)$ is not.
- Field: $(\mathbb{Q}, +, \cdot), (\mathbb{R}, +, \cdot), (\mathbb{C}, +, \cdot)$ are fields.

Definition. A element a in ring R is a **unit** if it has a multiplicative inverse, $\exists b \in R$ such that $ab = ba = 1$.

Remark: A unity is unique if it exists.

Example. $R = \{a + bi + cj + dk \mid i, j, k, 1 \text{ follow quaternion group}\}$ is a division ring but not a field.

Definition. If R is a ring and $a, b \in R$ are non-zero but $ab = 0$, then a, b are called zero-divisor.

Proposition. A unit in R is never a zero-divisor.

Example. \mathbb{Z}_n is a ring. Then for \mathbb{Z}_6 , [2], [3], [4] are zero-divisors. [1], [5] are units.

Proposition. More generally in Z_n , with $1 \leq m \leq n-1$,

 $[m]$ is a unit $\iff \gcd(m, n) = 1$

 $[m]$ is a zero-divisor $\iff \gcd(m, n) > 1$

Proof. (1). " \Longleftarrow : " If $gcd(m, n) = 1$, then $1 = am + bn$ for $a, b \in \mathbb{Z}$. If r is the remainder of a by n, $a = sn + r$, then $1 = smm + rm + bn = rm + (sn + b)n$, so $[r][m] = [1]$ in \mathbb{Z}_n . Thus, m is a unit.

" \Rightarrow ": If $[m]$ is a unit, then $[r][m] = 1$ for some $r \in \mathbb{Z}_n$. So, $rm = 1 + nq \iff 1 = rm - nq$ for some $q \in \mathbb{Z}$. Thus, $[m]$ is a unit.

(2). \leftarrow : If $gcd(m, n) > 1$, then $m = m_1d, n = n_1d$, where $m_1, n_1 \in \mathbb{Z}$. So, $mn_1 = m_1dn_1$ $m_1n \implies [m][n_1] = 0 \implies m$ is a zero-divisor.

 \Rightarrow : If $[m]$ is a zero-divisor, then $[m]$ is not a unit. From previous result, $gcd(m, n) \neq 1 \implies$ $gcd(m, n) > 1.$

Corollary. If p prime, \mathbb{Z}_p is a field.

Definition. A ring R is an integral domain if R is commutative with unity and no zerodivisors.

Remark: In an integral domain, multiplicative canellation law holds.

Example. $(\mathbb{Z}, +, \cdot)$ is an integral domain. $(\mathbb{Z}_n, +, \cdot)$ is an integral domain \iff n is prime.

Definition. If R, R' are rings, then $\rho : R \to R'$ is a **ring homomorphism** if

- $\phi(a + b) = \phi(a) + \phi(b)$
- $\phi(ab) = \phi(a)\phi(b)$

If ϕ is also one-to-one and onto, then ϕ is a ring isomorphism

Example. $\phi : (\mathbb{Z}, +, \cdot) \to (2\mathbb{Z}, +, \cdot) \cdot \phi(a) = 2a$. Here, $\phi(ab) \neq \phi(a)\phi(b) \implies \phi$ is not a ring homomorphism.

Example. $\phi : (\mathbb{Z}, +, \cdot) \to (\mathbb{Z}_n, +, \cdot), \phi(a) = [\text{remainder of } a \text{ by } n].$ Then, ϕ is a ring homomorphism.

Fact: If R is a ring with unity, then the unit elements in R form a group under multiplication.

Example. In \mathbb{Z}_5 under multiplication, the unit elements are $\{[1], [2], [3], [4]\}$. In particular, $\{[2], [4]\}$ are generators and it is thus isomorphic to \mathbb{Z}_4 .

<u>Fact:</u> For any prime $p, \mathbb{Z}_p - \{0\}$ is a group under multiplication, denoted as \mathbb{Z}_p^{\times} .

Useful Number theory equivalances

- $a \equiv b \mod n \iff n \mid a b$
- $a \equiv b \mod n \iff a^r \equiv b^r \mod n$
- $a \equiv b \mod n \iff ca \equiv cb \mod n \forall c$

Theorem. [Fermat's Little Theorem]. If $a \in \mathbb{Z}$ and p prime such that $gcd(a, p) = 1$, then

$$
a^{p-1} \equiv 1 \mod p
$$

Proof. $|\mathbb{Z}_p^{\times}| = p - 1$. So $\forall [m] \in \mathbb{Z}_p^{\times}$, $[m]^{p-1} = [1]$. So, remainder of m^{p-1} by p is 1, which is saying $m^{\hat{p}-1} \equiv 1 \mod p$.

Now, if $a \in \mathbb{Z}$, $gcd(a, p) = 1$, and m is remainder of a by p. Then $1 \le m \le p - 1$, so $a \equiv m$ $\mod p \implies a^{p-1} \equiv m^{p-1} \equiv 1 \mod p$

Corollary. If p is prime and $a \in \mathbb{Z}$, then

$$
a^p\equiv a\mod p
$$

Proof. If $p \mid a$, then $p \mid a^p \implies a^p \equiv a \equiv 0 \mod p$. Otherwise if $p \nmid a$, then $gcd(p, a) = 1$. $a^{p-1} \equiv 1 \mod p \implies a^p \equiv a \mod p$.

Example. Find remainder of 40^{100} by 19.

Note that $40 \equiv 2 \mod 19$. $40^{90} \equiv 40^{18} \equiv 1 \mod 19 \implies 40^{100} \equiv 40^{10} \equiv 2^{10} \equiv 32^2 \equiv 13^2 \equiv$ $(-6)^2 \equiv 17 \mod 19$

Example. Prove $15 | n^{33} - n \forall n \in \mathbb{Z}$.

General idea: Show $3 | n^{33} - n$ and $5 | n^{33} - n$ separately.

 $3|n^{33}-n$: If $3|n$, then this is obvious. If $3 \nmid n$, then $n^2 \equiv 1 \mod 3 \implies (n^2)^{16} \equiv 1$ $mod 3 \implies n^{33} \equiv n \mod 3.$

 $5|n^{33}-n:$ If $5|n$, then this is obvious. If $5 \nmid n$, then $n^4 \equiv 1 \mod 5 \implies n^{32} \equiv 1$ $\mod 5 \implies n^{33} \equiv n \mod 5.$

Definition. If $n \geq 2 \in \mathbb{Z}$, then Euler's ϕ function is $\phi(n) =$ the number of units in \mathbb{Z}_n .

<u>Fact:</u> The units of \mathbb{Z}_n form a group under multiplication: $|\mathbb{Z}_n^{\times}| = \phi(n)$

Theorem. For any $a \in \mathbb{Z}$ with $gcd(a, n) = 1$, it is the case that

$$
a^{\phi(n)} \equiv 1 \mod n
$$

Example. For \mathbb{Z}_6 , [1] and [5] are units $\implies \phi(6) = 2$. So, if $gcd(a, 6) = 1$, then $a^2 \equiv \mod 6$. **Example.** Find remainder of $151⁸$ by 8.

 $\phi(8) = 4$. If $gcd(a, 8) = 1$, then $a^4 \equiv 1 \mod 8$. $gcd(151, 8) = 1 \implies$ remainder is 1.

Theorem. The equation $ax \equiv b \mod n$ has solution if and only if $gcd(a, n) \mid b$. Then, there are $d := \gcd(a, n)$ solutions in \mathbb{Z}_n .

Proof. Case 1: $gcd(a, n) = 1$. Then for $ax \equiv b \mod n$, let $a = nq + r$, $b = np + s$.

Thus, $gcd(a, n) = 1 \iff gcd(r, n) = 1 \implies [r]$ is a unit $\implies [r]$ has an inverse.

Then $[r][x] = [s]$ in $\mathbb{Z}_n \implies [x] = [r]^{-1}[s]$ in \mathbb{Z}_n , a unique solution.

Case 2: $gcd(a, n) = d$. Then if $ax \equiv b \mod n$ has solution, then $ax - b = nk$ for some $k \in \mathbb{Z}$, so $b = ax - nk \implies d | b$.

Conversely, suppose $d \mid b$, We have $a = a_1 d, n = n_1 d, b = b_1 d$ and $gcd(a_1, n_1) = 1$. Then

 $ax \equiv b \mod n \iff n \mid ax-b \iff n_1 d \mid d(ax-b) \iff n_1 \mid a_1x-b_1 \iff a_1x \equiv b_1 \mod n_1$

Since $gcd(a_1, n_1) = 1$, the equation has a unique solution in \mathbb{Z}_{n_1} so there are d solutions in \mathbb{Z}_n .

Example. Solve $12x \equiv 25 \mod 7$

 $\iff 5x \equiv 4 \mod 7 \implies [5][x] = [4] \implies [x] = [3][4], x = [5].$

Example. Solve $4x \equiv 32 \mod 20$.

 $gcd(6, 20) = 2 \implies 2$ solutions. 6x mod 32 mod 10 $\iff 3x \equiv 16 \mod 5 \iff 3x \equiv 6$ mod 10. Thus $[3]^{-1} = [7] \implies [x] = [7][6] = [2]$ in \mathbb{Z}_{10} . In \mathbb{Z}_{20} , the solutions are $\{[2], [12]\}$

5 Constructing Rings and Fields

Definition. Recall that a ring D is an integral domain if it

- has a unity
- is commutative
- has no zero divisors

Then, we can construct a *field* F containing D, where let $S = \{(a, b) | a, b \in D, b \neq 0\}$. Then we say $(a, b) \sim (c, d)$ if $ad = bc$.

If the *equivalence* class of (a, b) is $[(a, b)]$, let F be a set of equivalence classes. Then F is a ring with

- $[(a, b)] + [(c, d)] = [(ad + bc, bd)]$
- $[(a, b)][(c, d)] = [(ac, bd)]$

if they are well-defined.

Checking whether this is well-defined: If $(a, b) \sim (a', b')$ and $(c, d) \sim (c', d')$, then $(ad + bc, cd) \sim$ $(a'd' + b'c', b'd')$

- Identity: $[(0, 1)]$
- Inverse: $-[(a, b)] = [(-a, b)]$
- Unity: $[(1, 1)]$
- Let $\phi: D \to F, \phi(a) = [(a, 1)]$. ϕ is a ring homomorphism and is one-to-one, $[(a, 1)] =$ $[(b, 1)] \iff a = b$

Remark: If D is a field, then $F = D$. In other words, ϕ onto. If $[(a, b)] \in F$, $\phi(ab^{-1}) = [(a, b)]$, since $[(ab^{-1}, 1)] = [(a, b)]$

Example. If R_1, R_2 are rings, $R_1 \times R_2 = \{(a, b) | a \in R_1, b \in R_2\}$. Then

$$
\begin{cases}\n(a, b) + (a', b') = (a + a', b + b') \\
(a, b)(a', b') = (aa', bb')\n\end{cases} \implies R_1, R_2 \text{ a ring}
$$

 $\mathbb{Z} \times \mathbb{Z}$ has zero divisors: $(1,0)(0,1) = (0,0)$

[Add Everything from Notes]

5.1 Polynomial Rings

Definition. Let R be a ring. A **polynomial** $f(x)$ with coefficients in R is of the form $a_0 + a_1x + ... + a_nx^n$ where x indeterminant, $a_1, ..., a_n$ coefficients, a_0 is the constant term.

- If *n* is the largest integer such that $a_n \neq 0$, $f(x)$ has **degree** *n*.
- If $f(x)$ is the zero polynomial $(a_0 = ... = a_n = 0)$, the degree is not well-defined.
- If $deg(f(x)) = 0$ or $f(x) = 0$, we say $f(x)$ is **constant**
- If R has a **unity**, we write x^k

Let the set of all polynomials with coefficients in R be $R[x]$. Set

$$
f(x) = a_0 + a_1x + \dots + a_nx^n, \qquad g(x) = b_0 + b_1x + \dots + b_mx^m, \qquad n \ge m
$$

$$
f(x) + g(x) = (a_0 + b_0) + (a_1 + b_1)x + \dots + (a_m + b_m)x^m + a_{m+1}x^{m+1} + \dots + a_nx^n
$$

$$
f(x)g(x) = (a_0b_0) + (a_0b_1 + a_1b_0)x + \dots + a_nb_mx^{n+m}, \qquad \text{coefficient of } x^k = \sum_{i=1}^k a_ib_{k-i}
$$

<u>Fact:</u> $R[x]$ is a ring.

- Identity is the zero-polynomial
- If R commutative, then $R[x]$ commutative
- If R has unity 1, then $R[x]$ has unity

Example. Find all polynomials of degree 2 in $\mathbb{Z}_2[x]$: $\{x^2, x^2 + x, x^2 + 1, x^2 + x + 1\}$ Let F be a field, $F[x]$. If $a \in F$, then

$$
f(x) = a_n x^n + \dots + a_1 x + a_0 \in F
$$

Then the function $F[x] \xrightarrow{\phi_a} F, f(x) \mapsto f(a)$, and

$$
\phi_a(f(x)g(x))=f(a)g(a)\qquad \phi_a(f(x)+g(x))=\phi_a(f(x))+\phi_a(g(x))=f(a)+g(a)
$$

Example. Let $F = \mathbb{Z}_5$, $f(x) = x^5 - x$, $g(x) = x^5 + 1$. $f(x)$ has 5 zeros, $\{0, 1, 2, 3, 4\}$ and $g(x)$ has 1 zero $\{4\}.$

5.2 Unique Factorization of Polynomials

Example. Let $F = \mathbb{Z}_5$. Divide $3x^4 + 2x^3 + x + 2$ by $x^2 + 4$: $3x^4 + 2x^3 + x + 2 =$ $(x^2+4)(3x^2+2x+3)+3x$

Division Algorithm. Let F be a field, and $f(x), g(x) \in F[x]$ such that $g(x) \neq 0$. Then there are unique polynomials $q(x)$, $r(x)$ such that

$$
f(x) = g(x)q(x) + r(x), \qquad \deg(r(x)) < \deg(g(x))
$$

Proof. Let $f(x) = a_n x^n + ... + a_1 x + a_0, g(x) = b_m x^m + ... + b_1 x + b_0$, and $S = \{f(x)$ $g(x)h(x) | h \in F[x]$

If the polynomial is in S_r then we are then, and $f(x) = g(x)h(x)$. Otherwise, let $r(x)$ be the polynomial with smallest degree in S, where $c_t x^t + \dots + c_1 x + c_0$, so $f(x) = g(x)h(x) + r(x)$ for some $h(x)$.

Then, to show $t < m$ or $\deg(r(x)) < \deg(g(x))$, I suppose otherwise that $t \geq m$. Then $f(x)$ – $g(x)(h(x) + \frac{c_t}{b_m}x^{t-m}) \in S.$

$$
f(x) - g(x) \left(h(x) - \frac{c_t}{b_m} x^{t-m} \right) = r(x) - \frac{c_t}{b_m} g(x) x^{t-m}
$$

Here, $\frac{c_t}{b_m} g(x) x^{t-m} = c_t x^t + \text{ lower terms}$

Corollary. $a \in F$ is a zero of $f(x) \iff f(x) = (x - a)g(x)$ for some $g(x) \in F[x]$

Proof. \Longleftarrow . Plug in a. $f(a) = 0$.

 \implies : By division algorithm, $f(x) = (x - a)q(x) + r(x)$, where $r(x) = 0$ or $deg r(x) < 1$, so $r(x) = c$ is a constant. Evaluate at a: $f(a) = (a - a)g(a) + c \implies c = 0$

Corollary. Every non-zero polynomial of degree n has at most n zeros in F .

Proof. Prove by induction on n. If $n = 0$, $f(x) = c, c \neq 0$, so there is no zero.

For $n-1 \implies n$, if $f(x)$ has no zeros, then we are done.

Otherwise, let a be a zero of $f(x)$, so $f(x) = (x - a)g(x)$, deg $g(x) = n - 1$. If b is a zero of $g(x)$, then $0 = f(b) = (b - a)g(b)$. Since F is a field $b - a = 0$ or $g(b) = 0$. But, $g(x)$ has at most $n-1$ zeros, so $f(x)$ has at most n zeros.

Definition. A non-constant polynomial $f(x) \in F[x]$ is called **reducible** if it could be written as $f(x) = g(x)h(x)$, where $g(x), h(x) \in F[x]$, $deg(g(x))$, $deg(h(x)) < deg(f(x))$.

 $f(x)$ is **irreducible** if it is not reducible.

Example. $x^2 - 2 \in \mathbb{Q}[x]$ is irreducible, but it is reducible in $\mathbb{R}[x]$.

Proposition. Let $f(x) \in F[x]$.

- If $deg(f(x)) = 1$, then $f(x)$ is irreducible.
- If $deg(f(x)) = 2$, then $f(x)$ is reducible $\iff f(x)$ has zero in F.
- If $deg(f(x)) = 3$, then $f(x)$ is reducible $\iff f(x)$ has zero in F.

Proof. For degree $2 \Leftarrow$: Clear: If $a \in F$ has a zero, $f(x) = (x - a)g(x)$.

 \implies : If $f(x)$ reducible, then $f(x) = g(x)h(x)$, where $g(x)$, $h(x) \in F[x]$, $deg(g(x)) = deg(h(x)) =$ 1. Write $g(x) = b_0 x + b_1, b_0 \neq 0$. Then, $-\frac{b_1}{b_0}$ is a zero of g and therefore also a zero of f.

Note: Key to this proposition is that any linear equation has a zero solution, but everything beyond is a mystery.

Example. $f(x) = (x^2 + 2)^2 \in \mathbb{R}[x]$ reducible but has no zeros.

Example. $x^2 - 2$, $x^3 - 2$ reducible in $\mathbb{Q}[x]$ but has no solutions in \mathbb{Q} .

Proposition. If $f(x) \in \mathbb{Z}[x]$, then $f(x)$ is reducible in $\mathbb{Q}[x] \iff f(x) = g(x)h(x)$, where $g(x), h(x) \in \mathbb{Z}[x], deg(g(x)), deg(h(x)) < deg(f(x)).$

Proof. See book.

Corollary. If $f(x) = x^n + ... + a_1x + a_0 \in \mathbb{Z}[x]$. Then every rational zero of $f(x)$ is an integer which divides a_0 .

Proof. If $\frac{p}{q}$ is a zero of $f(x)$, then $gcd(p, q) = 1$

$$
f\left(\frac{p}{q}\right) = \frac{p^n}{q^n} + a_{n-1}\frac{p^{n-1}}{q^{n-1}} + \dots + a_1\frac{p}{q} + a_0 = \frac{p^n + a_{n-1}p^{n-1}q + \dots + a_1pq^{n-1} + a_0q^n}{q^n} = 0
$$

■

Notice that q divides the numerator, so since q divides $a_{n-1}p^{n-1}q + ... + a_1pq^{n-1} + a_0q^n$, it must be that $q \mid p^n$. Since they are relatively prime, $q = \pm 1$ so $\frac{p}{q} = c \in \mathbb{Z}$. Also, using similar logic, p divides $a_0 q^n = \pm a_0$, so $p \mid a_0$.

Example. Is $x^5 + 8x + 2 \in \mathbb{Q}[x]$ irreducible? For $f(x) = x$ For $f(x) = x^5 + 8x + 2$, the possible zeros are $\pm 1, \pm 2$. None of the above is a zero $f(x)$, so $f(x)$ irreducible in $\mathbb{Q}[x]$.

[Eisenstein Criterion]. If $f(x) = a_n x^n + ... + a_1 x + a_0 \in \mathbb{Z}[x]$ and if there is a prime p such that p divides $a_0, ..., a_{n-1}$ AND p does not divide a_n , then $f(x)$ irreducible in $\mathbb{Q}[x]$.

Example. $f(x) = x^4 + 8x + 2$. Let $p = 2$. By eisenstein, $f(x)$ is irreducible.

Proof. Suppose $f(x) = g(x)h(x)$, and let $deg(g(x))$, $deg(h(x)) < deg(f(x))$. Let

$$
g(x) = b_m x^m + \dots + b_1 x + b_0 \qquad h(x) = c_l x^l + \dots + c_1 x + c_0, \qquad m + l = n
$$

Then, $a_0 = b_0 c_0$, $a_n = b_m c_l$. If $p \mid a_0 = b_0 c_0$ and p^2 does not divide a_0 , then p divides exactly one of b_0, c_0 .

WLOG, assume $p \mid b_0$ and does not divide c_0 . But if $p \nmid a_n$, then $p \nmid b_m$. Let i be the smallest integer such that $p \nmid b_i$, so $p \mid b_0, ..., b_{i-1}, i \leq m < n$. Now, $a_i = b_i c_0 + b_{i-1} c_1 + ... + b_1 c_{i-1} c_i$, so $p \mid b_i c_0$ but $p \nmid b_i, c_0$ which is a contradiction. So $p \nmid a_n$.

Definition. Polynomial factorization: If F is a field and $f(x) \in F[x]$, then we factor $f(x)$ as $f(x) = f_1(x) \dots f_l(x) \in F[x]$ and irreducible. This factorization is unique up to reordering and nonzero constants.

5.3 Ideals

If $(R, +, \cdot)$ is a ring and $S \subset R$ is a non-empty subset, then S is a **subring** if

- S closed under multiplication
- $(S,+) \leq (R,+)$

Example. $(\mathbb{Z}, +, \cdot)$ is a subring of $(\mathbb{R}, +, \cdot)$

Example. $A = \{f(x) \in \mathbb{R}[x] \mid f(0) = 0\}$

When is R/S a ring with $(a+S)+(b+S) = (a+b)+S$ and $(a+S)(b+S) = ab \in S$ well-defined?

Definition. A subset $I \subseteq R$ is an ideal if

- $(I, +) \leq (R, +)$
- If $r \in R$ and $a \in I$, then $ra, ar \in I$.

Fact: Every *ideal* is a subring (Ideal is a stronger condition)

Example. Z is not an ideal of $\mathbb{R}: 2 \in \mathbb{Z}, \sqrt{3} \in \mathbb{R}, 2\sqrt{3} \notin \mathbb{Z}$

Theorem. If I is an ideal in R, then multiplication is well-defined on R/I , so R/I is a ring.

Proof. Suppose $a + I = a' + I$ and $b + I = b' + I$, then $a - a', b - b' \in I$. $ab - a'b' =$ $a(b - b') + b'(a - a') \in I \implies ab - a'b' \in I \implies ab + I = a'b' + I$

Example. What are ideals of \mathbb{Z} ? If I is an ideal, then it is a subgroup, so it is of the form $I = n\mathbb{Z}$. Every such subgroup is an ideal.

Example. What are ideals of \mathbb{R} ? 0 is always an ideal. R is also an ideal.

Proof. If $a \neq 0$ and $a \in I$, then $\forall r \in \mathbb{R}$, $\frac{r}{a} \cdot a \in I$, so $r \in I$.

Example. What are the ideals of $\mathbb{R}[x]$?

Proof. If $I \subseteq \mathbb{R}[x]$ is an ideal and $I \neq \{0\}$, let $f(x) \in I$ be polynomial of smallest degree.

If $g(x) \in I$, divide $g(x)$ by $f(x)$, where $g(x) = f(x)g(x) + r(x)$, $r(x) = 0$ or $deg(r(x)) =$ $deg(f(x)).$

Since $g(x)$, $f(x)g(x) \in I$, $r(x) = g(x) - f(x)g(x) \in I$. So by the choice of $f(x)$, $r(x) = 0 \implies$ $g(x) = g(x) f(x)$. $I = \{f(x)g(x) | g(x) \in \mathbb{R}[x] \}.$

Remark: The same argument holds for all $F[x]$.

Definition. If R is a commutative ring and $a \in R$, then $I = \{ar | r \in R\}$ is an ideal of R. In particular, I is the **principle ideal** generated by a, denoted as $I = (a)$.

Example. In $\mathbb{Z}[x], I = \{f(x) | f(0) \text{ even} \}$ is an ideal. $2, x \in I$, so I is not a principle ideal.

Proposition. If $\phi : R \to S$ is a ring homomorphism, then $\ker \phi := \{a \in R \mid \phi(a) = 0\}$ is an ideal of R.

Proof. We already know that $(ker(\phi), +) \leq (R, +)$. Now if $r \in R$, $a \in ker\phi$, then $\phi(ra) =$ $\phi(r)\phi(a) = 0$ and $\phi(ar) = \phi(a)\phi(r) = 0 \implies ar, ra \in ker\phi$.

Corollary. If R is a field, then ker $\phi = \{0\}$ or $\ker \phi = R$. So ϕ is 1-to-1 or ϕ is the 0.

Definition. An ideal $I \subseteq R$ is a **maximal ideal** if $I \neq R$ and there is no proper ideal J s.t. $I \nsubseteq J$. In other words, if $I \subseteq J \subseteq R$, then $J = R$ or $J = I$.

Example. [Maximial Ideas of Z] Let $I = n\mathbb{Z}$ and $n, m > 0$. $n\mathbb{Z} \subseteq m\mathbb{Z} \iff n \in m\mathbb{Z} \iff n\mathbb{Z} \iff n\math$ $m \mid n$. So, $n\mathbb{Z} = m\mathbb{Z}$ for $n, m \geq 1 \iff n \mid m$ and $m \mid n \iff m = n$. So $n\mathbb{Z}$ is a maximal ideal \iff *n* is prime.

Proposition. Suppose F is a field and $f(x) \in F[x]$. Then I is a maximal ideal $\iff f(x)$ is irreducible.

Proof. \implies . Suppose $f(x) = g(x)h(x)$, $0 < deg(g(x), h(x) < deg(f(x))$. Let $I = (f(x))$ ${f(x)q(x) \mid q(x) \in F[x]}$. We claim that $I = (f(x)) \subsetneqq (g(x))$ since every polynomial in I has degree \geq deg $f(x)$, so $g(x) \notin I$. Also $(g(x)) \neq F[x]$, since $1 \notin (g(x))$.

 \Leftarrow . Prove by contrapositive. If $I \subsetneq J \neq F[x]$, then $J = (g(x))$. So $f(x) \in (g(x)) \implies f(x) =$ $g(x)h(x)$ for some $h(x)$.

- If deg $g(x) = 0$, then $g(x) = c \in F \implies \frac{1}{c} \cdot c \in J \implies 1 \in J \implies h(x) = 1 \in J \implies$ $J = F[x]$.
- If deg $h(x) = 0$, then $h(x) = c \neq 0 \in F$, so $g(x) = \frac{1}{c}f(x) \in (f(x)) \implies (g(x)) \subseteq$ $(f(x)) \implies J = I.$

So $0 < \deg g(x)$, $h(x) < \deg f(x)$, so $f(x)$ reducible.

Example. If F is a field, what are maximal ideals of $F[x]$?.

 $I = (x^2 + 1) \subset \mathbb{R}[x]$ is a maximal ideal.