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1 Groups and Subgroups

1.1 Binary Operations

Definition. A binary operation * on set S is a function S x S — S, or equivalently,
(a,b) — axb.

Example.
e + is a binary operation on Z,Q, R.
e Multiplication is a binary opperation on Z,Q, R.
e Division is not a binary operation on Z,Q, R since we cannot divide by O.
e S =R — {0} with divison is a binary operation.
Let S be set of function f : R — R, where binary operations satisfy
o (f+9)(@) = f(@) + g(x)
o (f9)(®) = f(@)g(x)
o foyg(x) = flg(x))
Definition. A binary operation * on S is called commutative if axb=bxa, Va,be S
Definition. A binary operation x on S is called associative if (axb)xc = ax(bxc), Va,b,c € S
Thus, associativity also implies
axbxcxd=(axb)*(cxd)
=((axb)xc)*xd
=(ax(bxc))xd
Composition of functions is associative but not commutative. Note that they are not necessarily
correlated.

Definition. Let * be a binary operation on S. An element e € S is called an identity element
of Sifexa=axe=a,Vacs.

Note: If there is an identity element then it is unique.
Proof. Let e, e’ be identity elements. e = e x e’ = ¢’. |

Example.
e + on Z,Q,R has 0 as the identity element
e -on Z,Q,R has 1 as the identity element

e -+ ono Z" has no identity element.



1.2 Groups
Definition. A group is a set G with a binary operation * such that
1. x is associative
2. 3 an identity element e € G
3. Every element a € G has an inverse, where 3b € G such that axb=bx*xa =e.

Note that the inverse of a is unique.

Proof. if by,bs € G such that by xa = ax by = e and by *xa = a * by = e, then

bix(axby)=5b =0
birashy = Jrrlaxbe)=bive=b
(bl*a)*bgze*bgzbg
Denote the inverse of a as a™!, so that a* a™! = a~! x a = e and the group as (G, *)

Example.

e (Z,+) is a group with identity 0 and inverse of a is —a

-) is NOT a group, as inverse of 2 does not exist in Z

@, ) is NOT a group, as inverse of 0 does not exist in Q

(2,

(

(Q\{0},-) is a group with identity 1 and inverse of a is 1/a

(M, (R),+) is a group with identity 0 matrix and inverse of A is —A
(

M, (R),-) is NOT a group since inverse of A DNE if det(A4) =0

(GL,(R),-) is a group with identity I,, and inverse of A is A~}

Definition. If (G, *) is a commutative group, then it is called an abelian group.

Example. Let * be defined by a * b = ab/2, then (QV, %) is an abelian group.

1.3 Properties of Groups
Suppose (G, %) is a group.
1L (axb)™t=b"txa"!

.axb=e¢ = b=a!

2
3. Cancellation Law: axb=a*xc = b=c bxa=cxa = b=c
4. a* 2 = b has unique solution, where x = a~ 1 b

5

. (a‘l)_l =a
For n > 1,a € G, we denote

e a":=axax..*xa
—_————

n times



ntimes

o g = g™ x g™

Example. The group of integers modulo of n is Z, := {[0],[1],...,[n — 1]}. then, (Z,,+) is a
group with

e identity = [0]
e inverse of [i] = [n — 1]
o [i] + ([5] + [K]) = ([i] + [5]) + [K]
Example. {1,i,—1,—i} is a group under multiplication.
e identity =1
e every element has an inverse
e multiplication on C is associative by definition

Notice that G; = {1,4,—1,—1} and Gy = Z4 = {[0], [1], [2], [3]} form a group isomorphism,
where f : G — Ga, with f(1) = [0], f(¢) = [1], f(—=1) = [2], f(—i) = [3], and f is one-to-one
and onto with respect to group operations.

Definition. Two groups (G1,*1), (Ga,*2)) are isomorphic if there is a one-to-one and onto
map f: G; — G2 such that

f(a) =2 f(b) = f(ax1b)Va, b€ Gy
such a function is called isomorphism. This is denoted as (G1,*1) ~ (Ga, *2).

Definition. The order of a group, |G| is number of elements of G.

For groups of order 2, G = {e,a}, there is only ONE way to fill the table.

* e a
(& €
a a €

Rows and columns related to e are obvious. In particular, a * a # a because cancellation law
would imply a = e, which cannot be the case.

For groups of order 3, G = {e,a, b, c}, up to isomorphism, there is only one group.

For groups of order 4: fact - up to isomorphism, there are two groups.

1.4 Finite Non-abelian Groups
1.4.1 Permutations

Definition. A permutation of A is a one-to-one and onto function o : A — A.



Example. Given A ={1,2,3,4}, we can have 7: 1 — 1,2 — 2,3 — 4,4 +— 3, or equivalently,

(1 2 3 4\ (12 3 4
T=\1 2 4 3797 \2 31 4

In particular, the number of permutations of a set with n elements = n!.
The set of permutations of A with composition of function is a group, denoted by S4, where
e 7,0 one-to-one and onto = ¢ o 7 one-to-one and onto

e identity element is the identity map

{1 2 3 4
T T\3 1 2 4

Here if A ={1,2,...,n}, let S,, (Symmetric Groups) be the permutation of S, |S,| = nl.

e 0 €84 = o' €8y, where

n=1|51=1|,51=e
n=2|S =2 = S5 abelian
n=3|S3] =6 = not abelian,7o0 #ooT
Sy, not abelian for n > 3.
Another way of showing elements of 5,
n=6 o= (1 . g g 6) s o=(146)(23)(5)=(146)(23) =(32)461)

4 1 ~—~—
3—cycle 2—cycle

1.4.2 Dihedral Groups

Let D,, be a group of symmetris of a regular n-gon, where D,, is the set of permutations o € .S,
such that ¢, j adjacent <= o (i), o(j) adjacent.

o D3 = Sg
e Dy:o(1)=1,0(2) =3,0(3) =2,0(4) =4 ¢ Dy, and o = (1 3),(2 4),(1 2)(3 4) € D4
Fact: |D,| =2n
Suppose 7 = (1 3),0 = (1 2 3 4) D,, is a group under composition of functions, where 7,0 €
D,
7(0(7)),7(0(j)) adjacent <= o (i), 0(j) adjacent <= i, j adjacent
Now, if p is rotation by 27/n and 7 is reflection with respect to z-axis,

Dn = {67P7P27 "'7pn_177—77— O Py T Opn_l}

By convention, if G is an abrbitrary group, we can write ab instead of a * b.



1.5 More on Isomorphism Groups

Definition. An operation f is injective, or one-to-one on a set S if Vsy,s0 € S, f(s1) =
f(SQ) — S1 = S9.

Definition. An operation f is surjective, or onto on for f : X — Y if im(f) =Y. In
other words, Yy € Y, 3z € X such that f(z) =y

Let there be groups (Gi,*1),(Ga,%*2). Then isomorphhism ¢(G; — G3) is one-to-one, onto,
and

P(ax1b) = d(a) *2 ¢(b),Ja,b € Gy
We can say that G1 ~ G5, they are isomorphic.

Example. (M;(R),+) is isomorphic to (R%, +), where
a b
¢<[C d})—(abcd)

1. If ¢ : G; — Gy is an isomorphism, then ¢! : Gy — G is also an isomorphism, where
¢~ xay) = ¢~ (x) ¥1 ¢ (y), 37,y € Ga.

2. Isomorphism relationship is an equivalence relation on the set of all groups

Facts:

(a) G ~ G. identity map is an isomorphism
(b) Gl’:GQ - GQZGl
(¢) G1 Gy and G2 ~ G = G ~G3

Proof. (1) Let a = ¢™*(2),b = ¢~ (y), s0 ¢(a) = z,$(b) = y. 2y = $(a) *2 $(b) = d(a+1 b)
(3)¢2G1%G2,¢1G14)G2

Yo dlax1b) =1p(p(ax* b))

(p(a) *2 (b))
(p(a)) *3 1b(H(D))
o ¢(a) x3 1 o P(b)

(@
(4
(3

Example.
e (Z,+) and (R, +) not isomorphic
e FEzercise: Are (R — {0},-) and (C — {0}, -) isomorphic?

Proof. If ¢ : R — {0} — C — {0} is an isomorphism, ¢(a*1) = ¢(a)p(l) = ¢(1) = 1.
——

=¢(a)
There Ja € R — {0} such that ¢(a) = i. So ¢(a*) =1 = a* =1 = a = *1.
Then, ¢(—1) = i,1 = ¢(1) = ¢(—1)? = i®> = —1, so there is a contradiction and it is not
isomorphic. |



1.6 Subgroups

Definition. For group G with non-empty subset H C G is called a subgroup such that
eccH
eVacHa'eH
e Va,be Hyabe H

We can also denote this subgroup with H < G.

Definition. If G is a subgroup, then the subgroup consisting of G itself is the improper
subgroup of G. All other subgroups are proper subgroups. The subgroup {e} is the trivial
subgroup of G. All other subgroups are non-trivial.

Example.

e GG and {e} are subgroups of G.
(Z,+) < (R, +)
(R*, +) not subgroup of (R, +)
e Subgroups of Z4 : {[0]}, Z4, {[0], [2]}
e Subgroups of Zs : {[0]},Zs

e D, is a subgroup of S,
Proposition. A non-empty subset H of G is a subgroup if and only if Va,b € H,ab™! € H.
(*)
Proof. If H is a subgroup and a,b € H, then b=' € H,so ab™! € H.

Conversely, if ab~! € H is satisfied, then since H # ¢, there exists a € H and we can set b = a
soaa" ! € H,soec H.

If a € H, since e,a € H, by (*),ea ' €h = a1 € H.
If a,b € H, then by ii b= € H, so a,b=! € H, so (x) gives a(b~*)"t € H, s0 ab € H [ ]

1.7 Cyclic Subgroups

For group G with a € G, H = {a" |n € Z} C G. H is a subgroup:
eccH
ea"cHa"eH
e a",am € Ha"am =a"™mc H

We denote H =< a > where it is the subgroup generated by a, and < a > is a cyclic subgroup
of G.

Note: < a > is a subset of every subgroup of G which contains a.

Example. Zs = {[0],[1],[2],...,[7]}

< [2] >=<10], 2], [4], (6], [8] >



< [3] >=<[0], (3], [6], [1], [4], [7], [2], [5] >= Zs
< [4] >=<[0], [4] >

Example. G = (Z,+). <5>=1{...,—10,-5,0,5,10,...}

Definition. a € G, the order of a := | < a > |. If < a > is infinite, we say « has infinite
order.

Fact:
e If order of a is finite, then order of a = smallest n € Z such that a™ = e.
e If order of a is infinite, then a™ # a™2 if ny # no
Proof. Suppose n is the smallest positive integer such that a" = e, < a >= {e,qa,...,a" '} all

distinct elements. Clearly, if 0 < i < j < n —1 and a’ = &/, then e = a/~%, which is not
possible. Vm € Z, we have m =ng+r,0<r <n-—1, so

a™ =a""" =a" € {e,a,...,a" 1}

(11) Since < a > is infinite, there is no n > 0 such that a® = e. Now, if a’ = a7, then
a’”" =e,j —1i >0 is a contradiction. |
Example.

e Order of 5 in (Z,+) infinite

e Order of [5] in (Zg,+) is 6

e Order of [5] in (Z19,+) is 2
G is cyclicif G =< a > da € G.

Fact: Every cyclic group is abelian

Proof. If G =< a > and ¢1, g2 € G, then g; = a™,go = a™2 with ny,ns € Z

g1ges = a™a™? = qnitn2
{ = 9291 = 9192

g2g1 = a™ g = gnitne

Example.

o (Z,+) is cyclic Z =<1 >.

o (Zy,+) is cyclic Z, =< [1] >

e S,,n > 3 is not cyclic and not even abelian.

e D,,n > 3 is not cyclic and not even abelian.
Theorem. Suppose G is cyclic.

o If |G| = o0, then G ~ (Z,+).

e If |G| = n, then G =~ (Zy, +).



Proof. If k is the smallest positive integer such that a* = e, then G = {e, a, ...,a" 1} If |G| = o0,
then there is no positive k such that a* = e, so a™ = a™ implies n; = no. Thus define ¢ : Z —
G,n+— n®". Clearly ¢ onto, one-to-one, and ¢(n; + ny) = a™ " = a™a™ = ¢(n1)p(nz). So
¢ is an isomorphism.

Otherwise if |G| = n, then n is the smallest positive integer such that o™ = e. Then we can
define ¢ : Z,, — G, [i] — a*,0 <i < n—1. ¢ onto, one-to-one. If i +j =qgn+7r,0<r <n-—r,
then ¢([i] + [j]) = ¢([r]) = a” and ¢([i)¢([j]) = a'a’ = o™ = a®*" = d’, s0 ¢ is an
isomorphism. ]

Example. Let H =< (1,2)(3,4,5) >< S5. For what n is H ~ Z,?
0 = (3,5.4),0° = (1,2)(3,4,5)(3,5,4) = (1,2),0" = (3,4,5),0° = (1,2)(3,5,4),0° = ¢

Thus, H =< 0 >= {e,0,...,0°} ~ (Zg, +).

Proposition. Every subgroup of a cyclic group is cyclic.

Proof. Let G be cyclic G =< a > and H < G. If H = {e}, we are done.

Let k be the smallest positive integer such that a* € H. Then, to claim H =< a* >, then first
for C:
deH = <d*>CH

For H C< a* >, suppose a™ € H. Divide m by k with m = kq+r,0 <r < k — 1. Then,
A" ="t =gk = he H — " = (ak)_qh cH
Our choice of k implies r = 0, so m = kq, a™ = a7 €< a* > ]

Corollary. All subgroups of (Z,+) are of the form < n >,n € Z*

If n,m € Z, consider {rm + sn|r,s € Z} < (Z,+). By the corollary, there is d such that
{rm+ sn|r,s € Z =< d >} for some positive integer d € Z.

Definition.  The greatest common divisor of m and n, d = ged(m,n) where if m =
a a; M min(aj,b min(a¢,bt

Pt ptt n = pP ... pl. Then ged(m,n) = p} ( 1)---p£ (arbo),

Example. Since gcd(8,28) =4 with (—3)8 + (1)24 = 4,{8r + 28s|r,s € Z} =

(o) —4,0,4,8,..} =< 4>

Definition. If ged(m,n) = 1, we say m and n are relatively prime or coprime. Now if

d = ged(n,m), then n = nid,m = myd, m,n € Z with ged(ny,m;) = 1.

Corollary. m,n are relatively prime <= 3r, s € Z such that rn + sm = 1.

Example. Let G =< a >,|G| =n,G = {e,a,...,a" '}. Let H < G, H =< a™ >. What is

[H|?

We let b = a™, H =< a™ >. Let |H| = smallest positive k such that b* = e. We want

(a™)* = e = a™*. Thus, n|mk (n divides mk).

Let d = ged(n,m) so that n = nid,m = myd with ged(mq,n1) = 1. Then nid|midk =

ny|mik = ni|k. So smallest k =ny = 5 = Gedlmmy > SO |H| = Sedlrm) -
In particular, < ™ >= G iff m =n = ged(m,n) =1

10



Example. G =6,G = {e,a,...,a’}. | <a”|=3,|<a®>|=6

Definition. The generators of G is {a € G such that G =< a >}

If |G| =n and G =< a >, then o™ generates G <= ged(m,n) = 1. More generally, for any
ameG,|<am>|:m

Corollary. If G is cyclic of finite order and H < G, then |H| < |G].
Example. Find all generators of (Z,, +). {[1],[2], [4], [5], [7], [8]}

Example. G = (Zis,+). Find a subgroup of order 6. Let H < G, H =< [m] >, |H|
18/ged(m, 18) = 6. Thus, we can have m = 3, 15.

Fact: If G is cyclic of order n, G =< a >, then < a™ >=< a™ > <= gcd(mi,n) =
ged(ma, n)

Corollary. If G is cyclic of order n, for any d|n, there is eactly one subgroup of order d in
G.

Proof. If H=<a™ >, H =n/gcd(m,n) =d = gcd(m,n) = %5. For example if m = 4, then
ged(m,n) = ged(%,n) = 2. | < ad > | = d. Uniqueness follows from the above fact. [ |

Example. Klein 4 Group

0O S o|*
o2 2 oo
S0 0 2|9
L 0o oo
o Q8 0|0

<a>={e,a}l,<b>={e,b}, < c>={e,c}.

1.8 Generators

Let H < G and a,b € G. Then < a,b > is the subgroup generated by a,b which is the set of
all combinations of a, b.

Example. ab~'a?b® €< a,b >, (ab™1a?b3)~! = (b73a"2ba"?t) €< a,b >,e=a’ €< a,b>
In general, {a;,i € I} C G. This is the subgroup of G generated by a;,i € I.
Fact: If H;,j € J are subgroups of G, then N;ecsH; is a subgroup of G.
e cc Hjforall j,soecNjecsH;.
e If a,b € NjcsH; then a,b € H;Vj, so ab~! € H; for all j. So ab™! € Nje H;
We can also consider < a;,¢ € I >= the intersection of all subgroups of G which contain
a;,t € 1.
Proof. C:< a;,i € I >C any subgroup of G which contain all the a;.

D:< aj,i € I > is a subgroup of G and contains all the a;. |

11



Definition. If G is generated by a finite number of elements, G =< ay, ..., G, >, then G is
called finitely generated.

Example. (Q,+) is not finitely generated. Let %, e ‘g—: € Q, then

a1 (79} ay Qp
H=<—,..,—>={t1—+ ...+ t,—:t1,....t, € Z
by b, { 1b1 + ...+ b, 1 }

Let p be a prime number such that p > by,...,b,. Then % ¢ H. If % = % + ...+ tl‘f—" =
ﬁ so pA = by...b, but p not divisible b;...b,,n.

1.9 Dihedral Group Revisited

Diheral group D, with n > 3, with |D,| = 2n. We can have p = (1,2,...,n) which is a
counter-clockwise rotation by 27” i is a reflection with respect to x-axis, such that p? = e.
Then,

Dy ={e,p,0%, s p" 1 s iy ooy pip™ '}

Note that by definition and using inversees, pp’ = p"~‘uvl < i < n.

We can also describe this as D,, =< p, i >.

12



2 Structure of Groups

2.1 Permutation Groups
Definition. ¢ : G — G’ is called a homomorphism if Va,b € G, ¢(ab) = ¢(a)¢p(b).

Example.
eG4 G’ ¢(a) = €’ is a homomorphism.
o Z, % D,, [i] = p' is a homomorphism. This is one-to-one but not onto.

o GLy(R) ={ {Z Z} |a,b,¢c,d € R,ad — ¢ # 0} group under matrix multiplication.
GL2(R) — (R — {0}, ).
Proposition. If ¢ : G — G’ is a homomorphism, then
1. ¢(e) =¢
2. p(a™t) =¢(a)"'Vae G
3. If H <G, then ¢(H) < G’ where ¢(H) = {é(a)la € G}.
4. If K < H', then ¢~ 1(K) < G where ¢~ 1(k) = {a € G|é(a) € K}

Proof. (1). ¢(ce) = dle)g(e) so ' = B(e).
~——
¢(e)
(2). $la)p(a~) = plaa~?) = Ble) = ¢, and $(a~")é(a) = ¢(a~1a) = B(e) = ¢/, 50 $(a~1) is

inverse of ¢(a).
(3). H<Gsoe€ H,so ¢le) € p(H) = €' € ¢(H).

If 2,y € ¢(H), then there are a,b € H such that ¢(a) = x and ¢(b) = y. So, zy~! =
P(a)p(b) ™t = p(a)p(b™") = p(ab™') € G(H).
(4). Exercise |

Theorem. [Cayley’s Theorem)]

Let S4 be a group of permutations of set A. Then V group G, 3 set A and a one-to-one
homomorphism ¢ : G — S4. So, G is isomorphic to ¢(G), and ¢(G) < S4.

Example.
e G=D,, D, <5,
e G=124,,then Z, — S,

e G = GLy(R). If A € GLy(R) then R? = R? {ﬂ — A B] is one-to-one and ontto so
A

fa is a permutation of R2. In addition, fap = fa o f5, 50 GL2(R) 2, Srz, A faiss a
group homomorphism. ¢ is one-to-one: If f4 = fg, then A z =B ; Vx,y € R. Then
A=b

13



Proof. If g € G, then the function Ay : G — G has A\;(z) = gx.
Ag one-to-one: If Ag(x) = A\y(y), then gz = gy, so z = y.
Ag onto: Yy € g, \g(g7'y) = 997 'y = y.
So, Ay € SgNote that A, is not a group homomorphism, as gzy # grgy
So, we have the map ¢ : G — Sg, g9 — Ag.
Now, we want to show that ¢ is one-to-one homomorphism:
¢ is a homomorphism:

¢<g192) = d)(gl) © ¢(92) = )‘91792 ('7;) = 9192($) = /\91 (ng) = )‘91 0 )‘92 (l‘)

——

Agi.go ()
¢ is one-to-one: If ¢(g1) = ¢(g2), then Ay, = Ay, so Vo € G, Ay, (z) = Ag,(2), so g1z =
G2r = g1 = g2 u
Definition. Let ¢ : G — G’ be a homomorphism. The kernel of ¢ is

ker(¢) := {a € G;¢(a) =€’} =7 ({¢'})

Note that since {e'} < G’  ker(¢) < G.
Example. ¢:7Z — Z,,a — [remainder of n/a]. ker(¢) = nZ

Proposition. ¢ one-to-one <= ker(¢) = {e}

Proof. =: Clear

—: If ¢(a) = ¢(b
abl=e¢ = a=

), then ¢(a) = ¢(b)~! = ¢€'. So ¢(a)p(b™!) = ¢ = ¢(ab™!) = €, so
b |
2.1.1 0Odd and even permutation

Definition. A 2-cycle is called a transposition

In general, if (a1, a2, ..., @m—1,0m) € Sy, then (a1, a9, ..., am) = (a1, am)(a1, am-1)...(a1, az2).
Every o € S, is a product of transpositions that is not unique

Example. o= (1,2,4)(3,6) = (1,4)(1,2)(3,6)

Theorem. If 0 € S,, then ¢ cannot be written both as a product of an even number of
transpositions and as a product of an odd number of transpositions.

Let o = (a1,b1) ... (ag, bg). o is an odd/even permutation if k is odd/even.

In general, Vn, the number of odd permutations and even permutations is the same.

A,, := set of even permutations C S,,, B, := set of odd permutations C .S,,

Proof. Let o be any 2-cycle. Define A\, : A, — B,,,0 — 5.

A, is onto and one-to-one:
Onto: If p € By, then 7p € A, and A\ (7p) = 77 p=p

e
One-to-one: 701 = 709 = 01 = 09. Thus, |A,| = |B,| [ ]

14



Proposition. A, is a subgroup of order %‘ in S,,.

Proof. ecc A,
e 0,09 € A, ten o102 € A,

o Ifo e An,O' = (al,bl)...(ak,bk),J*I = (a;“b) ...(al,bl) €A,

A, is the alternating group on n elements.

If 0 € S,,, we can define

. 1, if o even
S9n(9) =3 1 it o odd

{1, -1} is a group under multiplication.
Here, sgn : S,, — {1, —1} is a homomorphism with sign(o102) = sign(oy)sign(oz).

Thus, ker(sgn) = A,

2.2 Finitely Generated Abelian Groups

Direct product of groups Let G1, G2 be two groups. The cartesian product of Gy, Gs is G X
G2 = {(a1,a2);a1 € G1,a2 € Ga}

Group operation on Gy X Go is defined as (a1,a2)(b1,b2) = (a1b1,azbe). Identity = (eq,es).
Inverse of (ay,as) = (a7*,a5").

This ia a group, called the direct product of Gy, Gs.
Example.  Zy x Z5 = {([0],[0]), ([0]. [1]), ([1],[0]), ([1]. [1])}. Here, a? = b = ¢ = e. So
—_— e~ Y —

a b c
Zo X Zo not isomorphic to Zg4.

Example. Zy x Z3 :< ([1],[1]) >= {(0,0),(1,1),(0,2),(1,0),(0,1),(1,2)}. Thus Zy x Z3 is
cyclic so Zy X Z3 ~ Zg.

Proposition. Z,, x Z, is cyclic (therefore isomorphic to Z,,,) if and only if ged(m,n) = 1.

Proof. <= 1If ged(m,n) = 1, then Z,, x Z, =< ([1],[1]) >.

If order of ([1], [1]) is k,then ([k], [k]) = ([0],[0]), so m | n and n | k. Since ged(m,n) = 1, we get
nm |k so k >mn = order of ([1],[1]) = mn, so ([1],[1]) generates the group.

“=": If ged(m,n) = d > 1, then if ([a], [b]) € Zy, X Zpy,

nm anm bnm

2 lal, ) = (5, 2 = ([0}, [0])
(

and ™7 < nm, so G is not generated by only ([a], [b]) so G is not cyclic. |

More generally, for Gy, ..., G, the direct product is

Gy X ...xG = {(al,...,ak)|ai €G;,1<i< k‘}

15



with natural rules of operations, identity, and inverses. Then, Z,, X ... X Zn, =~ Zn,.. n,

ged(ng,nj) = 1Vi # j.
Proposition.
o G1 X Gy~ G2 X Gy. ¢: Gy x Gy — G x Gy, (a,b) — (b,a) is an isomorphism.
e If Hi < G1 and Hy < G, then Hy x Hy < G X Gs.
Example. Zs x Zy. H = {([0],[0]), ([1], [1])} < Z2 X Zg is not of the form H; x Hs
Proposition. Z,, X Z,, X ... X Z,, is cyclic if and only if ged(n;,n;) = 1,0 # j

2.3 More on Finitely Generated Abelian Groups
Theorem. Every finitely generated abelian group is isomorphic to

Zony X Dnoe X ... Xlonie XTLX...X D
Py Po Py N ——
m times

where p; are prime numbers, n; > 1 where p; not necessarily distinct.

Example. Find, up to isomorphism, all abelian groups of order 72.

Notice that abelian groups of order 8 are Zs, Zy X Zy4,Zo X Zo X Zs. Abelian grous of order 9

up to isomorphism are Zg, Zs X Zs. Thus, there are 3 x 2 = 6 groups.

Corollary. if G is abelian of order n and m ’ n then G has a subgroup of order m. Then G

has a subgroup of order m.

Remark: You can show that A4 has no subgroup of order 6.

Proof. If G =< a > is cyclic with |G| = n, m |n,

| <aw > | o
a’"L = —-——
ged(Z )

If G is arbitrary by the theorem but abelian, G = Zp;"l X ... X Zyk, then m = Pyt

33| 3

Since Z n; cyclic, and since p.**
i cyclic, i
G and has order P{"" x ... x P;"* =m.

2.4 Cosets

Let H < G. We say a ~ b if and only if a='b € H
e Reflexive: a la=e € H
e Symmetric: a”'be H = (a™ ') ' =b"tac H
e Transitive: a 'b,b"'c € H = ac™' €¢ H

So, we get a partition of G as the disjoint union of equivalence class.

mg

i, Z,i has a subgroup H; of order P Then Hy x...xHj <

Definition. Let a € G. The equivalence class containing a is aH, the left coset of H is:

{zeCGa~a}={zeGla's=heH}={az€G|z=ah,h€ H} =aH

Example‘ G = S3 = {67(1a2)5(173)a(273)7(1a253)7(1a372)} = {677-177-277—3’0-70-2} Here,

H = {e,0,0%} < S3. Then, the left cosets of H are
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e cH=0H=H=0?H=1{0%eo0}=H

o nH ={m,m0,m0%} ={1,72, 73} = oH = 13H
Proposition.

e aH =bH <= a~VD

e acaH

e aH=H <— a€ H

e aH is a subgroup of G <= aH = H
Proof. If aH < G,e€aH. Soe=ah = o '€ H = acH,soa € H = ah=H |

Example. Let G = (Z,+). H =<5 >= {bn|n € Z}. All the left cosets of H can be given by
e 0+H={bnneZy=5+H
o l+H={5n+1neZ}=6+H

2+H={n+2neZ}=7+H

e 3+H={n+3ne€Z}=8+H

e d+H={5n+4neZ}=9+H

Example. Let G = (R,+), H = (Z,+) < G. The left coset can be given by r + Z,r € R. In
this case, there are infinitely many distinct left cosets where 0 < x <y <1, 2 +Z # y + Z.

Theorem.

1. If H < G,|H| = m, then every left coset of H has m elements.

2. [Lagrange’s Theorem] If H < G and |G| = n, then |H| | |G|
Proof. (1) Let aH be a left coset, then ¢ : H — aH, h — ah clearly shows ¢ is one-to-one and
onto. ahy = ahy = hy = hy. Thus, |H| = |aH]|.

(2) Let H = m and suppose H has r distinct left cosets a1 H,...,a, H. Then, |a;H| = |H| =m
and G =U_ya;H. So, G =7 la;H|=rm,som|n. [ ]
~~ =

n

Corollary. If |G| =n and a € G, then order of a divides n

Proof. Let m = ord(n) and H =< a > —{e,a,...,a™ '}.Som = |H| | |G| =n [ |
Corollary. If |G| = p where p is a prime number, then G is cyclic.

Proof. Pick e # a € G, thenlyéord(a)|p, soord(a) =p,|<a>|=p = <a>=G. [ |

Definition. If H < G, the number of distinct left cosets of H in G is denoted by (G : H),
the index of H in G.

If G is a finite group (G : H) = %

17



2.4.1 Right Cosets
We can have similar definitions with right cosets. For H < G,
a~'b < ba'€H

Equivalence class containing a = {z € G|a~' 2} ={zr € G|za™' € H} = {z € G |za™' =
hvh € Hy ={x € G|z = haVh € H} = Ha
Proposition.

e Ha=H <= ac H

e Ho=Hb < ab"' € H

e Hao = Hb,HanN Hb = Wa,b e G

e Hi<G <— ac H

o If |H| < oo, then |Ha| = |H|.
Example. S5 = {e,71,m,73,0,0%}. H<S3, H=1{e,7}
All right cosets can be given by

e He={e,7}

o Hry ={m,e}

o Hry = {m,0%}

o Hry = {73,0}
e Ho ={r3,0}
o Ho? = {02 1}

Example. G = S3,H = {e,0,0%} < S3.
Left Cosets:
ecH=0cH=0’H=H
o H =1H =13H ={71,72,73}
Right Cosets:
e He=Hoy =Ho?>=H
e Hry = Hro = Hrs = {71, 72,73 }-
In this specific case, every left coset is a right coset.

Example. H = 5Z < Z. Left cosets of H are given by 5Z,1+ 57,2+ 5Z,3 + 5Z,4 + 5Z. The
right cosets are 5Z,5Z + 1,57 + 2,57 + 3,57 + 4.

Example. If H < G and G is abelian, then

aH =HaVae G
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3 Homomorphisms and Factor Groups

3.1 Factor Group

Definition. A subgroup H of G is called a normal subgroup if aH = Ha for every a € G,
denoted as H < G.

Example.
e {e,0,0%} 453
e {e,71} 455
« 4,48,
e Every subgroup of an abelian group is normal.
e If (G is finite and H < G is of index 2, then H is normal.

Proof. For aH if a € HyaH = Ha = H. Otherwise if a ¢ H, then aH N H =0, |[aH| = |H| =
% Also, Han H = 0,|Ha| = |H| = Sl so Ha= {be G|b ¢ H} = Ha ]

Proposition. If ¢ : G — G’ is a homomorphism, then ker(¢) < G.

Proof. Prove that for a € G, aker(¢) = ker(¢)a, where ker(¢) = {b € G|¢p(b) = ¢’}
C: If b € ker(¢), then ¢(aba™1) = ¢(a) ¢(b) p(a™1) = ¢’

ol
So, aba~! € ker(¢), let b’ = aba~! € ker(¢), then ab = V'a € ker(¢)a. The D direction is
similar m
Example. ¢:5, — {1,—1},¢(0) = sgn(o),ker(¢) = A,.

Proposition. H is normal <= aHa ! = H for all a € G.

Proof. «<—: If a €,we show aH = Ha.

aH C Ha: If h € H, then ah™'a € H, so aha™' = I’ for some h/ € H. So, ah = h'a =
ah € Ha

Ha CaH: If h€ H, then a 'Ha = H by assumption soa 'ha=h"' € h

— : Exercise [ |

Proposition. H is normal in G <= aHa ! C H for every a € G. (This is an alternative to
the proposition above)

Proof. = : clear

<= We show H C aHa™! for every a € G. We have a 'H(a"')"* C H, so a™'Ha C H. So
for any h € Hya"'ha=h € H. So h =ah'a ™' = h€aHa™'. |

Remark: aHa ' < G for any a € G.

e e =aea ! €aHa™!
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e If aha™t € aHa™!, then (aha™!)"! = ah~la™! € aHa™!.
e If ahja=t, ahea™t € aHa™*, then (ahia=')(ahoa™') = a(hihy)a™t € aHa 1.

For 57 < Z, with left cosets a = {5Z,5Z +1,5Z+2,5Z + 3,5Z + 4}. Here, the group operation
on Ais (a+5Z) % (b+ 5Z) = (a+b) + 5Z. But can we always do this:

H < G. Let A be set of left cosets of H in G, such that (aH)(bH) = abH? Is this a group
operation?

o Associativity: (aHbH)cH = abHcH = (ab)cH = a(bc)H = (aH)(bcH) = aH(bHcH).
This works.

e Identity: (eH)(aH) =eaH = aH

e Inverse: (e 'H)(aH) = (aH)(a"'H) = eH
However, this is not a group operation because this may not be well defined.
From previous sections, we had left cosets of H = {e, 71} < Ss:

e cH=71H=H-={e,n}

e nH=0H={n,o}

o 3H = 0?H = {73,0°}.
Here, (roH)(moH) = 7H = eH = H but (0 H)(cH) = 0?H # H, while oH = o H
Definition. An operation if well-defined if aH = o'H and bH =V H = abH = d'b'H
Fact: If H < G, then the operation

(aH)(bH) = (ab)H

is well defined (and therefore is a group operation on the set of left cosets of H) if and only if
H<G.

Proof. First, suppose H < G. If aH = o'H and bH = b'H, then a~'a/, b0’ € H. We want to
show that abH = a’b'H (or therefore, b=ta=ta’t/ € H.)

Let hy = a='a’,hy = b~'¥. Then b~ ta=ta't) = b= hyb' = b~'hibhy = (b= hib)he € H, so
abH = a'V' H.

Next, suppose the operation is well-defined. To show H < G, we show aha™! € H for every
a€G,heH.:

We have hH = eH,a *H = a 'H. So,
(hH)(a "H) = (eH)(a 'H) = (ha WH=a"'H = (a") ' ha ' € H = ah"'ac H
n

Definition. If H < G, operation (aH )(bH) = abH on the set of left cosets is a group operation,
denoted as G/H, the factor group of G by H.

Example. 5Z <Z then Z/5Z ~ Zs

Proposition.
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1. If N < G, then there is a natural onto homomorphism ¢ : G — G/N, ¢(a) = aN, where

kerg ={a € Glgp(a) =N} ={a € GlaN=N}=N

Corollary. Converse of Lagrange’s Theorem is not true. For example, A4 has no subgroup
of order 6.

Proof. If H is a subgroup of order 5 in Ay, then (A4 : H) = 2. So H is normal. If we look at the
factor grouo Ay/H, |Ay/H| =2 = Vo € Ay, (cH)(oH) = eH € Ay/H. Hence 6>H = H, so
0% € HYo € Ay. However, in Ay, |[H| > 8 so this is not possible. |

Proposition. If ¢ : G — G’ is a homomorphism, then
G/ ker ¢ =~ im(g)
(ker(¢) 9 G,im(¢) = ¢(G) < G')
Proof. Define 1 : G/ker(¢) — im(¢) by 1h(aker(¢)) = ¢(a). This is well-defined because if
aker ¢ = bker ¢, then a~'b € ker(¢) = d(a=1b) = ¢/ = ¢(a)"1o(b) = €', s0 H(b) = ¢(a).

¥ is clearly a homomorphism: (aker(¢)bker(¢)) = w(abker(¢)) = ¢(ab) = ¢(a)p(b) =
P(aker(¢))y (bker(d)).

Then, 3 onto: For any ¢(a), ¥ (aN) = ¢(a). Meanwhile ¢ one-to-one: If ¢(a ker ¢) = 1(bker ¢),
then ¢(a) = ¢(b) = ¢(a=tb) =€/, 50 a~'b € ker¢p = aker$ = bker ¢. [ ]

Example. If ¢ : G — G’ is a homomorphism which is not trivial (not every g € G is sent
to €’') with |G’| = 15, |G| = 18, what is |ker ¢|?
Known: 18 = |G|/ | ker(¢)] = [im(@)
Example. Factor groups:
o G/G ~{e}
e G/{e} ~G
o Z/n7l ~Tn. 7 — Ly = Z]/ker¢p ~im(¢p) = Z/nZ ~ L.
o ZXZ/ < (1,1)>

For group G with N < G, the group structure of G/N is aNbN = abN. The order is |G/N| =
(G : N), the index of N with G.

Example.  Zi3/([4]) has |Z12/([4])| = £ = 4. Here, the order is not 2 so Z15/N is not
ZQ X ZQ, and Zlg/N ~ Z4.

Proposition. If G is cyclic and N < G, then G/N is cyclic.

Proof. It G = (a), then show that G/N is generated by aN. If bN is given, then b = o™ for
some m, so bN = a™N = (aN)™. [ |

Example. Z x Z/{(1,1)) ~Z. Then, (a1,b1) ~ (az,b2) <= a1 — as = by — bs.
To show this, define ¢ : Z x Z — Z by ¢(a,b) = a — b. Then, since
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e ¢ is homomorphism

e ¢ onto: If n € Z, then ¢(n,0) = n.

o kerg = {(a,b)a— b =0} = ((1,1))
Together, this implies that Z x Z/{(1,1)) ~ Z, where ker ¢ = ((1,1)),im(¢) = Z.
Example. Z x Z/{((2,1)) ~ Z.

Notice that G = {§|a € Z} < Q. Then we can define ¢ : G — Z, g — 2g as a homomorphism
that is clearly one-to-one and onto. Thus, 1 is clearly an isomorphism.

Then, define ¢ : Z x Z — 7Z such that ¢((a,b)) = a — 2b. Then,
e ¢ homomorphism
e ¢ onto: If n € Z,¢((n,0)) =n.
e ker ¢ = {(a,b)la —2b=0} = ((2,1))
Together, this implies Z x Z/{(2,1)) ~ Z.
Example. Z xZ/{(2,2)) ~7Z X Zs.
Define ¢((a, b)) = (a — b,0) if a even and (a — b, 1) is a is odd. Then,
e ¢ homomorphism

e ¢ onto: If (n,0) € ZXZs, then ¢(2n,n) = (n,0). If (n,1) € Z x Zg, then ¢(2n+1,n+1) =
(n,1).

e ker ¢ = {(a,b)la —b=0,a even} = {(2,2)).

3.2 Simple Group
Definition. A group G is simple if G has no proper, non-trivial normal group.
Example. Any finite group of order is simple.

Example. A, for n > 5 is simple.

3.2.1 Center of Groups

Definition. We define for a group G its center as

Z(G) :={z € G| 29 =gzVg € G}

Proposition. Z(G) is a normal subgroup of G.

Proof. First, Show Z(G) is a subgroup:

e eg=geVge G = e <€ Z(Q)

e 21,20 € Z(G) = 21229 = 21922 = g2z122, S0 2122 € Z(G).

e If2€ Z(G),zgt =g t2V¥g, 50 (2971 ) =(g72) ! = gz l=27"1g = 27t € Z(g)
Then, to show Z(G) < G: If g € G,z € Z(G), then gzg~' = g9~ 12 = 2 € Z(G). [ ]
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Proposition. Group G is abelian <— Z(G) = G.
Example. Z(GL,(R))={rl,|r € R}

3.2.2 Commutator of Groups

Definition. Let G be a group with a,b € G. Then the commutator of a, b is defined as
[a,b] = aba™ b~ "
Properties:
e [a,b)=e < ab=ba
o [a,b]7t = (aba=1b~1)"t = bab"ta"! = [b,q]

Definition. The commutator subgroup G’ is the subgroup generated by all commutators

G’ = {[a,b] | a,b € G) ={[a1,b1], ..., [an, bn]}

Proposition. G' < G

Proof. To show gla,blg™! € G,

-1 -1

glablg™" = gaba='b"'g™" = gag~'gbg~'ga" g gb g

= [gag™*,gbg 7] € G’

Proposition. G/G’ abelian
Proof. The is to prove aG'bG’' = bG'aG'.

b latba=p"ta €@ = (ab) ' (ba) € G’ = abG’ = baG’

Proposition. If N < G and G/N abelian, G’ < N.
Ezxercise: Let G = S3. What is G'?.

We know As has index 2 in Ss, so A3 < S3, and S3/As has two elements so S3/As ~ Za, so it
is abelian, so G’ < As.

Check other side, then we get G’ = Az

3.3 Groups Acting on Sets

Definition. Let G be a group acting on sets. Then a set X is a G-set or G acts on X if
there is a function
Gx X — X, (g,2)—g-x

such that
ec-x=xVreX

® g2-(g1-7) =(9201) - vVx € X, 91,92 € G.
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Proposition. If X is a G-set, then the function ¢, : X — X, 04(X) = g - « is one-to-one and
onto. Thus, o4 is permutation of X, where o4 € 5.

1

Proof. 1-to-1: If g-z2 =g-y,theng™ ' - (g-2) =g - (g y) = e-x=c-y = z=19.

Onto: If y € X, thenlet r =g~ ' -y € X. Then,g-x=g- (g7 -y)=e-y=1y. [ ]
Proposition. The function ¢ : G — Sx, ¢(g) = 0, is a group homomorphism.

Proof. 1t g1, 95 € G, 9(9192) (%) = 09,9, (%) = (91 - 92) - & = g1 - (92 - ).

Also, (¢(g1)-¢(g2))(z) = d(g1)(P(92)-x) = g1-(g2-x). They are equal and form a homomorphism.
|

Example.

o Let G = GL,(R),X =R". If A € GL,(R),v € R™ then we can define group action
A-v=Avsothat I-v=vVv, (AB)v = A(Bv).

e Trivial action: For some groups G, X, g-x =z,Vg € G,z € X
e S, acting on {1,...,n} is a group action.

e Group G acting on itself by multiplication is a group action: X = G, g -z := gx. Then,
e-x=ex =z and (g1g2)x = g1(g22).

e Group G acting on itself by conjugation is a group action: X = G,g -z := gzg '

Then, e -z = exe”! = . Meanwhile, (¢192) - ¢ = g1912(g192) " = 19295 ‘g7 * and
91-(92-2) = g1 (92295 ") = g192wg5 " g7 . Thus they are equal.

Definition. Let G act on X then for any € X, we define the isotropy group as

G, ={9€G|gz=ux}

Proposition. If X is a G-set, then Vx € X, G, < G.

Proof. eccG:ex=x
e If g1,92 € G, then g12 = 7,90z =2 = (g192)T = 91(927) = 1 =2 = @q1g2 € G.

e IfgcG,,thengr=2. Theng lgz=¢g 'z = g la=2 = ¢ ' €G,.

Definition. [Orbit] If G acts on X and x € X, then orbit of X is

Gr:={gz|geG}C X

Proposition. If x and y are in the same orbit, we write x ~ y. In fact, this is an equivalence
relationship, where y = gz3g € G

e L ~I:.:x=e€x
e T ~VY — Y~NIT LY =gr —> g_ly:g_lgac::msoywx

e Transitive: If y = gx,z = ¢'y, then z = ¢'gz = (¢'g)r = 2z ~=z.
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Theorem. If G acts on X and z € X, then
G| = (G : Ga)

where Gz is the orbit of x and (G : G,) is the number of left cosets of G,.
Proof. Define ¢ : cosets of G, in G — G, where ¢(aG,) =a -z, a € G.

o ¢ well-defined: aG, =G, = a 'bE€G, = a 'bo =2 = azx = bx.

o pisl-to-l: bx=axr = a ‘br=2 = ab ! €G, = bG, =aG,.

e ¢ onto: ¢(aG,) = ax
Thus, (G : G;) = |G| |

Definition. For group G acting on X, define X¢g := {x € X ’ g-x =av¥g € G} C X. Note
that x € X iff the orbit of  has only one element.

Theorem. If G is a group with |G| = p™ for prime p and X is a G-set, then
|X|=|X¢| modp

Proof. Let Gz, ..., Gz, be all distinct orbits with more than one element. then,

X = 1Xe|+ ) |Gl = [Xe| + Y (G : Ga,)
i=1

i=1
Recall that |Gz;| > 1 and G is finite, so (G : Gy,) = |C|i“‘ = |C’;:‘ >1 = |G,,| is a multiple
of p.

Then, p| (G :Gy)V1<i<r = p| > _(G:G,,) = |X|=|Xg| mod p [ ]

Example. Suppose Dy is acting on {1,2,3,4}. |Dy| = 8 and p = 2. This means that | X|, | X¢|
must be both odd or both even.

Example. If Z;; is acting nontrivially on X and X and |X| = 20, what is | X¢g|?
Since action is non-trivial, | X¢g| # 20 so it has to be the case that |X¢| = 9.

Theorem. [Cauchy’s Theorem] If p | |G|, then G has a subgroup of order p, equivalently
G has an element of order p.

Proof. Let X = {(gl,..7gp)|gl,...,gp € G,g1...9p = €e}. Then |X| = ||G| x ... x |G| =
GIP~t = p||z].

Then, let G = Z,, act on X by shifting so that i - (g1, ..., 9p) = (gi+1,---,g:). To verify that this
is a group action, 0 (g1, .., 9p) = (91, -, gp) and (i + ) - (g1, 9p) =7 - (G- (915, Gp))-
Since |G| = |Z,| = p, we get | X| =|Xg| mod p, where

Xe={(g1, - 9p) € X |i-(g1,--,9p) = (91,--,9p),0 < i < p—1} = {(a,...,a) | aP = e}

Since p | |X|, we have p | |[X¢| = |Xg| = p, so H(a,...,a) € Xg,aP =e,a #e. |

Remark:
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1. If G is abelian and m | |G|, then G has a subgroup of order m.
2. |A4| = 12, but A4 has no subgroup of order 6.

3. If p = 2, then any group with even number of elements has an element of order 2, and
2 -1

a*=e = a=a
Corollary. If |G| = p™ with p prime, then Z(G) # {e}.

Proof. Let X = G and let G act on X by conjugation: g-x = grg~'.
Xe={zeX|g-z=aVg} ={2€G|gag ' =aVge G} ={a € G| gz =g} = Z(G)
Then by theorem,

{IXXGI modp {P||XG| — |X¢| > p, so Z(G) # {e}

p|IX| e € Xa, s0 1< |X¢|

Corollary. If |G| = p?, then G is abelian. So, G ~ Z,2, or Z;, X Zj.

Proof. From previous corollary, it is clear that |Z(G)| > 1. Since Z(G) < G, |Z(G)||p* =
1Z(G)| =p or |Z(G) = p?|
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4 Rings and Fields

4.1 Rings and Fields

Definition. A ring is a set R with 2 binary operations +(addition) and -(multiplication),
denoted as (R, +, ) such that

e (R,+) is an abelian group, with identity 0.

e - is associative

e Distributivity holds: (a+b)-c=a-c+b-canda-(b+c)=a-b+a-c
Example.

o (Z,+,),(Q,+,-), (R, +,-) are rings.

o (M,(R),+,) is a ring.

e (2Z,+,-) is a ring.

o (Zy,+,-) is a ring with - operation being [a] - [b] = [remainder of ab].
Properties of Rings.

1.0-a=a-0=0

2. (—a)-b=a-(—b) = —(ab)

3. (—a)(=b) =ab

Proof. (1). 0-a=(0+0)-a = 0=0a.
(2). (—a)-b+a-b=(a—a)-b=0 = (—a)-b=—(a-b)
(3). (—a)(—=b) = —(—ab) = ab [ ]

Definition. Let (R, +,-) be a ring. Then
e R is a commutative ring if ab = baVa,b
e R is a ring with unity if it has a multiplicative identity, where al = 1la = a Va

e R is a division ring if R has unity and every non-zero a has a multiplicative inverse,
where a #0 € R = 3b € R such that ab=0ba =1

e R is a Field if it is a commutative division ring.

Example.
o Commutative Ring: (Q,+,-) is commutative but (M, (R),+, ) is not.
e Ring with Unity: (M,(R),+,-) has unity but (Zs,+, ) has no unity.
e Division Ring: (Q,+,-) is a division ring but (Z, +-) is not.
o Field: (Q,+,-),(R,+,-),(C,+,) are fields.

Definition. A element a in ring R is a unit if it has a multiplicative inverse, 3b € R such
that ab = ba = 1.

Remark: A unity is unique if it exists.
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Example. R ={a+bi+cj+dk | i,j,k, 1 follow quarternion group} is a division ring but not
a field.

Definition. If R is a ring and a,b € R are non-zero but ab = 0, then a,b are called
zero-divisor.

Proposition. A unit in R is never a zero-divisor.
Example. Z, is a ring. Then for Zg, [2],[3], [4] are zero-divisors. [1], [5] are units.
Proposition. More generally in Z,, with 1 <m <n —1,
[m] is a unit <= ged(m,n) =1
[m] is a zero-divisor <= ged(m,n) > 1
Proof. (1). “<=:" If ged(m,n) = 1, then 1 = am + bn for a,b € Z. If r is the remainder of a

by n, a = sn+r, then 1 = snm + rm +bn = rm+ (sn+ b)n, so [r][m] = [1] in Z,,. Thus, m is
a unit.

“ = 7: If [m] is a unit, then [r][m] = 1 for some r € Z,,. So, rm =1+nq < 1=rm—ngq
for some ¢ € Z. Thus, [m] is a unit.

(2).«<=: If ged(m,n) > 1, then m = myd,n = nid, where my,ny € Z. So, mny; = midn; =
min = [m][n1] =0 = m is a zero-divisor.

= : If [m] is a zero-divisor, then [m] is not a unit. From previous result, ged(m,n) #1 =
ged(m,n) > 1. ]
Corollary. If p prime, Z, is a field.

Definition. A ring R is an integral domain if R is commutative with unity and no zero-
divisors.

Remark: In an integral domain, multiplicative canellation law holds.
Example. (Z,+,-) is an integral domain. (Z,,+,-) is an integral domain <= n is prime.
Definition. If R, R’ are rings, then p: R — R’ is a ring homomorphism if
e 6(a+b) = ola) + o(b)
o 6(ab) = d(a)(b)
If ¢ is also one-to-one and onto, then ¢ is a ring isomorphism

Example. ¢ :(Z,+, ) = (2Z,+,).¢(a) = 2a. Here, ¢p(ab) # ¢(a)p(b) = ¢ is not a ring
homomorphism.

Example. ¢ : (Z,+,") = (Zn,+,"), ¢(a) = [remainder of a by n]. Then, ¢ is a ring
homomorphism.

Fact: If R is a ring with unity, then the unit elements in R form a group under multiplication.

Example. In Z; under multiplication, the unit elements are {[1], [2], [3], [4]}. In particular,
{[2], [4]} are generators and it is thus isomorphic to Z, .

Fact: For any prime p, Z, — {[0]} is a group under multiplication, denoted as Z).

Useful Number theory equivalances
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e a=b modn < n|a—b

e a=b modn < a" =b" modn

e a=b modn <= ca=cb modnVc
Theorem. [Fermat’s Little Theorem)]. If a € Z and p prime such that ged(a,p) = 1, then

a*'=1 modp

Proof. |Z)| = p —1. So V[m] € Z),[m]’~" = [1]. So, remainder of m?~! by p is 1, which is
saying mP~!' =1 mod p.
Now, if a € Z,gcd(a,p) = 1, and m is remainder of a by p. Then 1 < m <p—1,s0a=m
modp = a? '=mP1=1 modp [ |
Corollary. If p is prime and a € Z, then

a’? =a mod p

Proof. pr’a, thenp|ap =— a? =a=0 mod p.
Otherwise if pt a, then ged(p,a) =1. a?"1 =1 mod p = a” =a mod p. |
Example. Find remainder of 40'%° by 19.

Note that 40 = 2 mod 19. 40% = 40'® =1 mod 19 = 40190 = 4010 = 210 = 322 = 132 =
(—6)2 = 17 mod 19

Example. Prove 15 | n33 —nvn € Z.
General idea: Show 3 ‘ n3% —n and 5 ’ n33 — n separately.

3 | n3 —n: If 3 | n, then this is obvious. If 3 { n, then n? = 1 mod 3 = (n?)!% =1
mod 3 = n* =n mod 3.

5 | n33 —n: If5 | n, then this is obvious. If 5 { n, then n* = 1 mod5 = n3 = 1
mod 5 = n% =n mod 5.

Definition. If n > 2 € Z, then Euler’s ¢ function is ¢(n) = the number of units in Z,.
Fact: The units of Z,, form a group under multiplication: |Z}| = ¢(n)

Theorem. For any a € Z with ged(a,n) = 1, it is the case that

a®™ =1 modn

Example. For Zg, [1] and [5] are units = ¢(6) = 2. So, if ged(a, 6) = 1, then a*> = mod 6.
Example. Find remainder of 1518 by 8.
#(8) = 4. If ged(a, 8) = 1, then a* =1 mod 8. ged(151,8) =1 = remainder is 1.

Theorem. The equation axz =b mod n has solution if and only if ged(a,n) ‘ b. Then, there
are d := ged(a,n) solutions in Z,.

29



Proof. Case 1: ged(a,n) = 1. Then for ax =b mod n, let a =ng+r,b=np+s.
Thus, ged(a,n) =1 < ged(r,n) =1 = [r] is a unit = [r] has an inverse.
Then [r][z] = [s] in Z, = [z] = [r]~}[s] in Z,,, a unique solution.

Case 2: ged(a,n) = d. Then if ax = b mod n has solution, then ax — b = nk for some k € Z,
sob=ar —nk = d|b.

Conversely, suppose d | b, We have a = a;d,n = n1d,b = b1d and ged(a,n1) = 1. Then

ax=b modn < n|axfb “— n1d|d(a:cfb) <~ |a1m—b1 — a1z =0b; modn,

Since ged(ai,n1) = 1, the equation has a unique solution in Z,, so there are d solutions in
Lo, [ ]
Example. Solve 122 =25 mod 7

<~ 5r=4 mod 7 = [5|[z] = [4] = [z] =[3][4],z = [5].

Example. Solve 4x = 32 mod 20.

ged(6,20) = 2 = 2 solutions. 62z mod 32 mod 10 <= 3z =16 mod5 <= 3z =6
mod 10. Thus [3]7! =[7] = [z] = [7][6] = [2] in Z1¢. In Zag, the solutions are {[2],[12]}
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5 Constructing Rings and Fields

Definition. Recall that a ring D is an integral domain if it
e has a unity
e is commutative
e has no zero divisors

Then, we can construct a field F containing D, where let S = {(a,b)|a,b € D,b % 0}. Then
we say (a,b) ~ (¢, d) if ad = be.

If the equivalence class of (a,b) is [(a,b)], let F be a set of equivalence classes. Then F is a ring
with

e [(a,b)] + [(¢,d)] = [(ad + bc, bd))
e [(a,b)][(c,d)] = [(ac, bd)]
if they are well-defined.

Checking whether this is well-defined: If (a,b) ~ (a’,b") and (¢, d) ~ (¢, d’), then (ad+bc, ed) ~
(@d + v Vd)

e Identity: [(0,1)]
e Inverse: —[(a,b)] = [(—a,b)]
e Unity: [(1,1)]

e Let ¢ : D — F,p(a) = [(a,1)]. ¢ is a ring homomorphism and is one-to-one, [(a,1)] =
[(b,1)] <= a=0b

Remark: If D is a field, then F' = D. In other words, ¢ onto. If [(a,b)] € F,¢(ab™ ) = [(a,b)],
since [(ab™", 1)] = [(a,b)]

Example. If R;, Ry are rings, Ry X Ry = {(a,b) ’ a € Ry,b € Ro}. Then

b /b/ — /b b/
{(a, V4@ V) = (ata b t)

(a,b)(a’, V) = (ad’,bb’)

Z x Z has zero divisors: (1,0)(0,1) = (0,0)
[Add Everything from Notes]

5.1 Polynomial Rings

Definition.  Let R be a ring. A polynomial f(z) with coefficients in R is of the form
ap + a1x + ... + a,x™ where x indeterminant, aq, ..., a,, coefficients, ag is the constant term.

e If n is the largest integer such that a,, # 0, f(z) has degree n.
e If f(x) is the zero polynomial (agp = ... = a,, = 0), the degree is not well-defined.
o If deg(f(x)) =0 or f(x) =0, we say f(x) is constant

e If R has a unity, we write ¥
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Let the set of all polynomials with coefficients in R be R[x]. Set
f@)=a+az+...+a,z", glx)=by+biz+..+bpz™, n>m

f(x) +g(x) = (ag +bo) + (a1 +b1)x 4 oo + (A + b)) 2™ + @y 12™ ™ + o 4 apa™
k
f(x)g(z) = (aobo) + (aobr + a1bo) + ... + apbma™ ™, coefficient of 2% = Zaibk_i
i=1
Fact: R[] is a ring.
e Identity is the zero-polynomial
e If R commutative, then R[z] commutative
e If R has unity 1, then R[z] has unity
Example. Find all polynomials of degree 2 in Zs[z]: {2?, 2% +z, 22 + 1,22 + 2 + 1}
Let F' be a field, F[z]. If a € F, then

f@)=an2x"+..+a1x+ag € F

2o F, f(z) = f(a), and

$a(f(2)g(2)) = fla)g(a)  Ga(f(2) +9(2)) = da(f (%)) + dalg(x)) = f(a) + g(a)

Then the function F[x]

Example. Let F' =Zs, f(z) = 2% —2,g(z) = 2% + 1. f(x) has 5 zeros, {0,1,2,3,4} and g(x)
has 1 zero {4}.

5.2 Unique Factorization of Polynomials
Example. Let F = Zs. Divide 32* + 223+ 2 +2 by 22 +4: 3z* + 223 + 24+ 2 =
(2% +4) (322 + 22 + 3) + 3z

Division Algorithm. Let F' be a field, and f(z), g(x) € F[z] such that g(z) # 0. Then there
are unique polynomials g(x), r(z) such that

f(@) = g(x)q(x) + r(z), deg(r(z)) < deg(g(x))

Proof. Let f(z) = anz™ + ... + a1z + ag,g9(x) = bpa™ + ... + bix + by, and S = {f(z) —
g(x)h(z) | h € Fla]}

If the polynomial is in S, then we are then, and f(z) = g(x)h(z). Otherwise, let r(z) be the
polynomial with smallest degree in S, where ¢;a® + ... + c12 + ¢g, so f(z) = g(x)h(z) +r(x) for
some h(zx).

Then, to show t < m or deg(r(z)) <deg(g(z)), I suppose otherwise that ¢ > m. Then f(z) —
g(@)(h(x) + g=at~™) € S.

Ct

Here, ;- g(x)a'"

m = c,xt+ lower terms [ |
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Corollary. a € Fis a zero of f(z) < f(z) = (z — a)g(x) for some g(z) € F[z]

Proof. <. Plug in a. f(a) =0.
= : By division algorithm, f(z) = (z — a)q(x) + r(z), where r(z) = 0 or degr(z) < 1, so
r(z) = c is a constant. Evaluate at a: f(a) = (a —a)g(a) +¢ = ¢=0 ]

Corollary. Every non-zero polynomial of degree n has at most n zeros in F'.

Proof. Prove by induction on n. If n =0, f(x) = ¢, ¢ # 0, so there is no zero.
For n —1 = n, if f(z) has no zeros, then we are done.

Otherwise, let a be a zero of f(z), so f(z) = (z — a)g(x), deg g(x) = n —1. If b is a zero of
g(x), then 0 = f(b) = (b — a)g(b). Since F is a field b —a = 0 or g(b) = 0. But, g(x) has at
most n — 1 zeros, so f(x) has at most n zeros. [ |

Definition. A non-constant polynomial f(x) € F[z] is called reducible if it could be written
as f(z) = g(x)h(x), where g(x), h(z) € Flz], deg(g()), deg(h(z)) < deg(f ().
f(z) is irreducible if it is not reducible.
Example. 22 —2 € Q[z] is irreducible, but it is reducible in R[z].
Proposition. Let f(x) € F[z].
o If deg(f(x)) = 1, then f(x) is irreducible.
o If deg(f(x)) =2, then f(x) is reducible <= f(x) has zero in F.
o If deg(f(x)) = 3, then f(z) is reducible <= f(z) has zero in F'.

Proof. For degree 2 <: Clear: If a € F has a zero, f(z) = (z — a)g(x).

= : If f(x) reducible, then f(z) = g(z)h(z), where g(x), h(z) € F[z],deg(g(x)) = deg(h(x)) =
1. Write g(x) = boz + b1,bo # 0. Then, —Z—; is a zero of g and therefore also a zero of f.

Note: Key to this proposition is that any linear equation has a zero solution, but everything
beyond is a mystery. |
Example. f(x) = (2% + 2)? € R[z] reducible but has no zeros.

Example. 2 — 2,23 — 2 reducible in Q[z] but has no solutions in Q.

Proposition. If f(z) € Z[z], then f(x) is reducible in Q[z] <= f(x) = g(x)h(x), where
g(x), h(x) € Zz], deg(g(x)), deg(h(z)) < deg(f(x)).

Proof. See book.

Corollary. If f(z) = 2" +...+a1x+ag € Z[z]. Then every rational zero of f(z) is an integer
which divides ag.
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Proof. If % is a zero of f(x), then ged(p,q) =1

n—1

D p" D D
f <> = —+Op_1——g +..+ar~ +a=
q q q q

P" 4 an1p" g+ .+ aipg" !+ aog”
qn

0

Notice that ¢ divides the numerator, so since ¢ divides an_1p" 'q + ... + a1pg™ ! + aoq”, it
must be that ¢ |p". Since they are relatively prime, ¢ = £1 so % = ¢ € Z. Also, using similar

logic, p divides agq™ = *ag, so p | ao.

Example. Is 2° 4 8z + 2 € Q[z] irreducible? For f(x) = x° 4+ 8z + 2, the possible zeros
are +1, +2. None of the above is a zero f(x), so f(x) irreducible in Q[z].

[Eisenstein Criterion]. If f(z) = apa™ + ... + a1z + ap € Z[z] and if there is a prime p such
that p divides ag, ..., an—1 AND p does not divide a,, then f(x) irreducible in Q[z].
x)

Example. f(x)=a2*+ 8z + 2. Let p = 2. By eisenstein, f(x) is irreducible.

Proof. Suppose f(x) = g(z)h(x), and let deg(g(z)), deg(h(x)) < deg(f(z)). Let
g(z) =bpz™ + ...+ bz +by h(z)= azl + ...+ 1z + o, m+l=n

Then, ag = bocg, ay, = by If p | ag = bocy and p? does not divide ag, then p divides exactly
one of by, cg.

WLOG, assume p ’ bp and does not divide ¢o. But if p { a,, then p{b,,. Let ¢ be the smallest
integer such that p { b;, so p ’ bo,....,bi_1, 1 <m <n. Now, a; = bjcg+b;_1c1+ ... + bic;_1¢;, so
P | bico but p 1 b;, ¢y which is a contradiction. So p 1 a,. |

Definition. Polynomial factorization: If F' is a field and f(z) € F[z], then we factor f(z)
as f(z) = fi(z)... fi(z) € F[z] and irreducible. This factorization is unique up to reordering
and nonzero constants.

5.3 Ideals
If (R,+,-) is a ring and S C R is a non-empty subset, then S is a subring if
e S closed under multiplication
e (5,+) < (R,+)
Example. (Z,+,-) is a subring of (R, +,")
Example. A= {f(z) € R[z]| f(0) =0}
When is R/S aring with (a+5)+(b+S5) = (a+b)+5 and (a+S5)(b+S5) = ab € S well-defined?
Definition. A subset I C R is an ideal if
o (I,+) < (R,+)
e If re Rand a € I, then ra,ar € I.
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Fact: Every ideal is a subring (Ideal is a stronger condition)
Example. Z isnot an ideal of R:2 € Z,v/3 € R,2V3 ¢ 7
Theorem. If [ is an ideal in R, then multiplication is well-defined on R/I, so R/I is a ring.

Proof. Suppose a +I = o' + T and b+ 1 = b + I, then a —a',b—b € I. ab—db =
ab—=b)+V(a—ad)el = ab—d'b el = ab+I=db +1 ]

Example. What are ideals of Z7? If I is an ideal, then it is a subgroup, so it is of the form
I = nZ. Every such subgroup is an ideal.

Example. What are ideals of R? 0 is always an ideal. R is also an ideal.
Proof. If a #0 and a € I, thenVr e R, Z-a €I, sor € I. [ |
Example. What are the ideals of R[z]?

Proof. If I C R[z] is an ideal and I # {0}, let f(z) € I be polynomial of smallest degree.

If g(x) € I, divide g(x) by f(z), where g(x) = f(x)g(z) + r(z), r(xz) = 0 or deg(r(x)) =
deg(f(x))-

Since g(x), f(x)g(z) € I, r(z) = g(x) — f(x)g(z) € I. So by the choice of f(z),r(z) =0 =
9(z) = g(2)f(x). I ={f(2)g(2)]g(z) € Rlz]}. .
Remark: The same argument holds for all F[z].

Definition. If R is a commutative ring and a € R, then I = {ar |r € R} is an ideal of R. In
particular, I is the principle ideal generated by a, denoted as I = (a).

Example. In Z[z],I = {f(z)]| f(0) even} is an ideal. 2,2 € I, so I is not a principle ideal.
Proposition. If ¢ : R — S is a ring homomorphism, then ker¢ := {a € R|¢(a) = 0} is an
ideal of R.

Proof. We already know that (ker(¢),+) < (R,+). Now if r € R,a € ker¢, then ¢(ra) =
d(r)p(a) =0 and ¢(ar) = ¢p(a)p(r) =0 = ar,ra € kero. |
Corollary. If R is a field, then ker ¢ = {0} or ker¢ = R. So ¢ is 1-to-1 or ¢ is the 0.

Definition. An ideal I C R is a maximal ideal if I # R and there is no proper ideal J s.t.
I'¢ J. In other words, if I C J C R, then J=Ror J =1.

Example. [Maximial Ideas of Z] Let I = nZ and n,m > 0. nZ C mZ <= n € mZ <—
m’n. So, nZ = mZ forn,m > 1 < n‘mandm‘n <= m =n. So nZ is a maximal ideal
<= n is prime.

Proposition. Suppose F' is a field and f(z) € F[z]. Then I is a maximal ideal <= f(z) is
irreducible.
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Proof. = . Suppose f(z) = g(x)h(z), 0 < degg(x),h(z) < degf(x). Let I = (f(x)) =
{f(x)q(z) | q(x) € F[z]}. We claim that I = (f(z)) S (g(z)) since every polynomial in I has
degree > deg f(x), so g(x) ¢ I. Also (g(x)) # Fx], since 1 ¢ (g(z)).

<= . Prove by contrapositive. If I G J # F[z], then J = (g(z)). So f(z) € (¢9(z)) = f(z) =
g(x)h(x) for some h(x).

o Ifdeg g(x) =0, then g(z) =c€ F = 1.ceJ = 1€J = h(x)=1¢cJ =

J = F[z].
o If deg h(z) = 0, then h(z) = ¢ #0 € F, so g(z) = 1f(z) € (f(z)) = (9(x)) C
(f(x)) = J=1I
So 0 < deg g(z), h(z) < deg f(x), so f(x) reducible. ]

Example. If F is a field, what are maximal ideals of F/[z]?.

I = (22 +1) C R[] is a maximal ideal.
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