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1 Groups and Subgroups

1.1 Binary Operations

Definition. A binary operation ∗ on set S is a function S × S → S, or equivalently,
(a, b) 7→ a ∗ b.

Example.

• + is a binary operation on Z,Q,R.

• Multiplication is a binary opperation on Z,Q,R.

• Division is not a binary operation on Z,Q,R since we cannot divide by 0.

• S = R− {0} with divison is a binary operation.

Let S be set of function f : R → R, where binary operations satisfy

• (f + g)(x) = f(x) + g(x)

• (f g)(x) = f(x)g(x)

• f ◦ g(x) = f(g(x))

Definition. A binary operation ∗ on S is called commutative if a ∗ b = b ∗ a, ∀ a, b ∈ S

Definition. A binary operation ∗ on S is called associative if (a∗b)∗c = a∗(b∗c), ∀ a, b, c ∈ S

Thus, associativity also implies

a ∗ b ∗ c ∗ d = (a ∗ b) ∗ (c ∗ d)
= ((a ∗ b) ∗ c) ∗ d
= (a ∗ (b ∗ c)) ∗ d

Composition of functions is associative but not commutative. Note that they are not necessarily
correlated.

Definition. Let ∗ be a binary operation on S. An element e ∈ S is called an identity element
of S if e ∗ a = a ∗ e = a, ∀ a ∈ S.

Note: If there is an identity element then it is unique.

Proof. Let e, e′ be identity elements. e = e ∗ e′ = e′. ■

Example.

• + on Z,Q,R has 0 as the identity element

• · on Z,Q,R has 1 as the identity element

• + ono Z+ has no identity element.
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1.2 Groups

Definition. A group is a set G with a binary operation ∗ such that

1. ∗ is associative

2. ∃ an identity element e ∈ G

3. Every element a ∈ G has an inverse, where ∃b ∈ G such that a ∗ b = b ∗ a = e.

Note that the inverse of a is unique.

Proof. if b1, b2 ∈ G such that b1 ∗ a = a ∗ b1 = e and b2 ∗ a = a ∗ b2 = e, then

b1 ∗ a ∗ b2 =

{
b1 ∗ (a ∗ b2) = b1 ∗ e = b1

(b1 ∗ a) ∗ b2 = e ∗ b2 = b2
=⇒ b1 = b2

■

Denote the inverse of a as a−1, so that a ∗ a−1 = a−1 ∗ a = e and the group as (G, ∗)

Example.

• (Z,+) is a group with identity 0 and inverse of a is −a

• (Z, ·) is NOT a group, as inverse of 2 does not exist in Z

• (Q, ·) is NOT a group, as inverse of 0 does not exist in Q

• (Q\{0}, ·) is a group with identity 1 and inverse of a is 1/a

• (Mn(R),+) is a group with identity 0 matrix and inverse of A is −A

• (Mn(R), ·) is NOT a group since inverse of A DNE if det(A) = 0

• (GLn(R), ·) is a group with identity In and inverse of A is A−1

Definition. If (G, ∗) is a commutative group, then it is called an abelian group.

Example. Let ∗ be defined by a ∗ b = ab/2, then (Q+, ∗) is an abelian group.

1.3 Properties of Groups

Suppose (G, ∗) is a group.

1. (a ∗ b)−1 = b−1 ∗ a−1

2. a ∗ b = e =⇒ b = a−1

3. Cancellation Law: a ∗ b = a ∗ c =⇒ b = c. b ∗ a = c ∗ a =⇒ b = c

4. a ∗ x = b has unique solution, where x = a−1 ∗ b

5.
(
a−1

)−1
= a

For n ≥ 1, a ∈ G, we denote

• an := a ∗ a ∗ ... ∗ a︸ ︷︷ ︸
n times

• a0 := e
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• a−n := a−1 ∗ a−1 ∗ ... ∗ a−1︸ ︷︷ ︸
ntimes

= (an)
−1

• an+m = an ∗ am

Example. The group of integers modulo of n is Zn := {[0], [1], ..., [n− 1]}. then, (Zn,+) is a
group with

• identity = [0]

• inverse of [i] = [n− i]

• [i] + ([j] + [k]) = ([i] + [j]) + [k]

Example. {1, i,−1,−i} is a group under multiplication.

• identity = 1

• every element has an inverse

• multiplication on C is associative by definition

Notice that G1 = {1, i,−1,−1} and G2 = Z4 = {[0], [1], [2], [3]} form a group isomorphism,
where f : G1 → G2, with f(1) = [0], f(i) = [1], f(−1) = [2], f(−i) = [3], and f is one-to-one
and onto with respect to group operations.

Definition. Two groups (G1, ∗1), (G2, ∗2)) are isomorphic if there is a one-to-one and onto
map f : G1 → G2 such that

f(a) ∗2 f(b) = f(a ∗1 b) ∀a, b ∈ G1

such a function is called isomorphism. This is denoted as (G1, ∗1) ≃ (G2, ∗2).

Definition. The order of a group, |G| is number of elements of G.

For groups of order 2, G = {e, a}, there is only ONE way to fill the table.

∗ e a
e e a
a a e

Rows and columns related to e are obvious. In particular, a ∗ a ̸= a because cancellation law
would imply a = e, which cannot be the case.

For groups of order 3, G = {e, a, b, c}, up to isomorphism, there is only one group.

∗ e a b
e e a b
a a b e
b b e a

For groups of order 4: fact - up to isomorphism, there are two groups.

1.4 Finite Non-abelian Groups

1.4.1 Permutations

Definition. A permutation of A is a one-to-one and onto function σ : A→ A.
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Example. Given A = {1, 2, 3, 4}, we can have τ : 1 7→ 1, 2 7→ 2, 3 7→ 4, 4 7→ 3, or equivalently,

τ =

(
1 2 3 4
1 2 4 3

)
, σ =

(
1 2 3 4
2 3 1 4

)
In particular, the number of permutations of a set with n elements = n!.

The set of permutations of A with composition of function is a group, denoted by SA, where

• τ, σ one-to-one and onto =⇒ σ ◦ τ one-to-one and onto

• identity element is the identity map

• σ ∈ SA =⇒ σ−1 ∈ SA, where

σ−1 =

(
1 2 3 4
3 1 2 4

)

Here if A = {1, 2, ..., n}, let Sn (Symmetric Groups) be the permutation of S, |Sn| = n!.

n = 1 |S1 = 1|, S1 = e

n = 2 |S2 = 2| =⇒ S2 abelian

n = 3 |S3| = 6 =⇒ not abelian, τ ◦ σ ̸= σ ◦ τ

Sn not abelian for n ≥ 3.

Another way of showing elements of Sn

n = 6 σ =

(
1 2 3 4 5 6
4 3 2 6 5 1

)
⇐⇒ σ = (1 4 6)︸ ︷︷ ︸

3−cycle

(2 3)︸ ︷︷ ︸
2−cycle

(5) = (1 4 6)(2 3) = (3 2)(4 6 1)

1.4.2 Dihedral Groups

Let Dn be a group of symmetris of a regular n-gon, where Dn is the set of permutations σ ∈ Sn

such that i, j adjacent ⇐⇒ σ(i), σ(j) adjacent.

• D3 = S3

• D4 : σ(1) = 1, σ(2) = 3, σ(3) = 2, σ(4) = 4 /∈ D4, and σ = (1 3), (2 4), (1 2)(3 4) ∈ D4

Fact: |Dn| = 2n

Suppose τ = (1 3), σ = (1 2 3 4) Dn is a group under composition of functions, where τ, σ ∈
Dn

τ(σ(i)), τ(σ(j)) adjacent ⇐⇒ σ(i), σ(j) adjacent ⇐⇒ i, j adjacent

Now, if ρ is rotation by 2π/n and τ is reflection with respect to x-axis,

Dn = {e, ρ, ρ2, ..., ρn−1, τ, τ ◦ ρ, ..., τ ◦ ρn−1}

By convention, if G is an abrbitrary group, we can write ab instead of a ∗ b.
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1.5 More on Isomorphism Groups

Definition. An operation f is injective, or one-to-one on a set S if ∀s1, s2 ∈ S, f(s1) =
f(s2) =⇒ s1 = s2.

Definition. An operation f is surjective, or onto on for f : X −→ Y if im(f) = Y . In
other words, ∀y ∈ Y, ∃x ∈ X such that f(x) = y.

Let there be groups (G1, ∗1), (G2, ∗2). Then isomorphhism ϕ(G1 → G2) is one-to-one, onto,
and

ϕ(a ∗1 b) = ϕ(a) ∗2 ϕ(b),∃a, b ∈ G1

We can say that G1 ≃ G2, they are isomorphic.

Example. (M2(R),+) is isomorphic to (R4,+), where

ϕ

([
a b
c d

])
= (a b c d)

Facts:

1. If ϕ : G1 → G2 is an isomorphism, then ϕ−1 : G2 → G1 is also an isomorphism, where
ϕ−1(x ∗2 y) = ϕ−1(x) ∗1 ϕ−1(y),∃x, y,∈ G2.

2. Isomorphism relationship is an equivalence relation on the set of all groups

(a) G ≃ G. identity map is an isomorphism

(b) G1 ≃ G2 =⇒ G2 ≃ G1

(c) G1 ≃ G2 and G2 ≃ G3 =⇒ G1 ≃ G3

Proof. (1) Let a = ϕ−1(x), b = ϕ−1(y), so ϕ(a) = x, ϕ(b) = y. x ∗2 y = ϕ(a) ∗2 ϕ(b) = ϕ(a ∗1 b)

(3) ϕ : G1 → G2, ψ : G1 → G2

ψ ◦ ϕ(a ∗1 b) = ψ(ϕ(a ∗1 b))
= ψ(ϕ(a) ∗2 ϕ(b)))
= ψ(ϕ(a)) ∗3 ψ(ϕ(b))
= ψ ◦ ϕ(a) ∗3 ψ ◦ ϕ(b)

■

Example.

• (Z,+) and (R,+) not isomorphic

• Exercise: Are (R− {0}, ·) and (C− {0}, ·) isomorphic?

Proof. If ϕ : R − {0} → C − {0} is an isomorphism, ϕ(a ∗ 1)︸ ︷︷ ︸
=ϕ(a)

= ϕ(a)ϕ(1) =⇒ ϕ(1) = 1.

There ∃a ∈ R − {0} such that ϕ(a) = i. So ϕ(a4) = 1 =⇒ a4 = 1 =⇒ a = ±1.
Then, ϕ(−1) = i, 1 = ϕ(1) = ϕ(−1)2 = i2 = −1, so there is a contradiction and it is not
isomorphic. ■
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1.6 Subgroups

Definition. For group G with non-empty subset H ⊆ G is called a subgroup such that

• e ∈ H

• ∀a ∈ H, a−1 ∈ H

• ∀a, b ∈ H, ab ∈ H

We can also denote this subgroup with H ≤ G.

Definition. If G is a subgroup, then the subgroup consisting of G itself is the improper
subgroup of G. All other subgroups are proper subgroups. The subgroup {e} is the trivial
subgroup of G. All other subgroups are non-trivial.

Example.

• G and {e} are subgroups of G.

• (Z,+) ≤ (R,+)

• (R+,+) not subgroup of (R,+)

• Subgroups of Z4 : {[0]},Z4, {[0], [2]}

• Subgroups of Z5 : {[0]},Z5

• Dn is a subgroup of Sn

Proposition. A non-empty subset H of G is a subgroup if and only if ∀a, b ∈ H, ab−1︸︷︷︸
(∗)

∈ H.

Proof. If H is a subgroup and a, b ∈ H, then b−1 ∈ H, so ab−1 ∈ H.

Conversely, if ab−1 ∈ H is satisfied, then since H ̸= ϕ, there exists a ∈ H and we can set b = a
so aa−1 ∈ H, so e ∈ H.

If a ∈ H, since e, a ∈ H, by (*), ea−1 ∈ h =⇒ a−1 ∈ H.

If a, b ∈ H, then by ii b−1 ∈ H, so a, b−1 ∈ H, so (∗) gives a(b−1)−1 ∈ H, so ab ∈ H ■

1.7 Cyclic Subgroups

For group G with a ∈ G, H = {an | n ∈ Z} ⊂ G. H is a subgroup:

• e ∈ H

• an ∈ H, a−n ∈ H

• an, am ∈ H, anam = an+m ∈ H

We denote H =< a > where it is the subgroup generated by a, and < a > is a cyclic subgroup
of G.

Note: < a > is a subset of every subgroup of G which contains a.

Example. Z8 = {[0], [1], [2], ..., [7]}.

< [2] >=< [0], [2], [4], [6], [8] >
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< [3] >=< [0], [3], [6], [1], [4], [7], [2], [5] >= Z8

< [4] >=< [0], [4] >

Example. G = (Z,+). < 5 >= {...,−10,−5, 0, 5, 10, ...}

Definition. a ∈ G, the order of a := | < a > |. If < a > is infinite, we say a has infinite
order.

Fact:

• If order of a is finite, then order of a = smallest n ∈ Z such that an = e.

• If order of a is infinite, then an1 ̸= an2 if n1 ̸= n2

Proof. Suppose n is the smallest positive integer such that an = e, < a >= {e, a, ..., an−1} all
distinct elements. Clearly, if 0 ≤ i < j ≤ n − 1 and ai = aj , then e = aj−i, which is not
possible. ∀m ∈ Z, we have m = nq + r, 0 ≤ r ≤ n− 1, so

am = anq+r = ar ∈ {e, a, ..., an−1}

(ii). Since < a > is infinite, there is no n > 0 such that an = e. Now, if ai = aj , then
aj−i = e, j − i > 0 is a contradiction. ■

Example.

• Order of 5 in (Z,+) infinite

• Order of [5] in (Z6,+) is 6

• Order of [5] in (Z10,+) is 2

G is cyclic if G =< a > ∃a ∈ G.

Fact: Every cyclic group is abelian

Proof. If G =< a > and g1, g2 ∈ G, then g1 = an1 , g2 = an2 with n1, n2 ∈ Z{
g1g2 = an1an2 = an1+n2

g2g1 = an2an1 = an1+n2
=⇒ g2g1 = g1g2

■

Example.

• (Z,+) is cyclic Z =< 1 >.

• (Zn,+) is cyclic Zn =< [1] >

• Sn, n ≥ 3 is not cyclic and not even abelian.

• Dn, n ≥ 3 is not cyclic and not even abelian.

Theorem. Suppose G is cyclic.

• If |G| = ∞, then G ≃ (Z,+).

• If |G| = n, then G ≃ (Zn,+).
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Proof. If k is the smallest positive integer such that ak = e, then G = {e, a, ..., ak−1} If |G| = ∞,
then there is no positive k such that ak = e, so an1 = an2 implies n1 = n2. Thus define ϕ : Z →
G,n 7→ na

n

. Clearly ϕ onto, one-to-one, and ϕ(n1 + n2) = an1+n2 = an1an2 = ϕ(n1)ϕ(n2). So
ϕ is an isomorphism.

Otherwise if |G| = n, then n is the smallest positive integer such that an = e. Then we can
define ϕ : Zn → G, [i] 7→ ai, 0 ≤ i ≤ n− 1. ϕ onto, one-to-one. If i+ j = qn+ r, 0 ≤ r ≤ n− r,
then ϕ([i] + [j]) = ϕ([r]) = ar and ϕ([i])ϕ([j]) = aiaj = ai+j = aqn+r = ar, so ϕ is an
isomorphism. ■

Example. Let H =< (1, 2)(3, 4, 5) >≤ S5. For what n is H ≃ Zn?

σ2 = (3, 5, 4), σ3 = (1, 2)(3, 4, 5)(3, 5, 4) = (1, 2), σ4 = (3, 4, 5), σ5 = (1, 2)(3, 5, 4), σ6 = e

Thus, H =< σ >= {e, σ, ..., σ5} ≃ (Z6,+).

Proposition. Every subgroup of a cyclic group is cyclic.

Proof. Let G be cyclic G =< a > and H ≤ G. If H = {e}, we are done.

Let k be the smallest positive integer such that ak ∈ H. Then, to claim H =< ak >, then first
for ⊆:

ak ∈ H =⇒ < ak >⊆ H

For H ⊆< ak >, suppose am ∈ H. Divide m by k with m = kq + r, 0 ≤ r ≤ k − 1. Then,

am = akq+r = akqar = h ∈ H =⇒ ar = (ak)−qh ∈ H

Our choice of k implies r = 0, so m = kq, am = akq ∈< ak > ■

Corollary. All subgroups of (Z,+) are of the form < n >, n ∈ Z+

If n,m ∈ Z, consider {rm + sn | r, s ∈ Z} ≤ (Z,+). By the corollary, there is d such that
{rm+ sn | r, s ∈ Z =< d >} for some positive integer d ∈ Z.

Definition. The greatest common divisor of m and n, d = gcd(m,n) where if m =

pa1
1 · · · pat

t , n = pb11 · · · pbtt . Then gcd(m,n) = p
min(a1,b1)
1 · · · p(min(at,bt))

t .

Example. Since gcd(8, 28) = 4 with (−3)8 + (1)24 = 4, {8r + 28s | r, s ∈ Z} =
{...,−4, 0, 4, 8, ...} =< 4 >

Definition. If gcd(m,n) = 1, we say m and n are relatively prime or coprime. Now if
d = gcd(n,m), then n = n1d,m = m1d, m,n ∈ Z with gcd(n1,m1) = 1.

Corollary. m,n are relatively prime ⇐⇒ ∃r, s ∈ Z such that rn+ sm = 1.

Example. Let G =< a >, |G| = n,G = {e, a, ..., an−1}. Let H ≤ G,H =< am >. What is
|H|?

We let b = am, H =< am >. Let |H| = smallest positive k such that bk = e. We want
(am)k = e = amk. Thus, n |mk (n divides mk).

Let d = gcd(n,m) so that n = n1d,m = m1d with gcd(m1, n1) = 1. Then n1d |m1dk =⇒
n1 |m1k =⇒ n1|k. So smallest k = n1 = n

d = n
gcd(n,m) , so |H| = n

gcd(n,m) .

In particular, < am >= G iff n
gcd(m,n) = n =⇒ gcd(m,n) = 1
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Example. G = 6, G = {e, a, ..., a5}. | < a>| = 3, | < a5 > | = 6

Definition. The generators of G is {a ∈ G such that G =< a >}

If |G| = n and G =< a >, then am generates G ⇐⇒ gcd(m,n) = 1. More generally, for any
am ∈ G, | < am > | = n

gcd(m,n)

Corollary. If G is cyclic of finite order and H ≤ G, then |H| ≤ |G|.

Example. Find all generators of (Zq,+). {[1], [2], [4], [5], [7], [8]}

Example. G = (Z18,+). Find a subgroup of order 6. Let H ≤ G,H =< [m] >, |H| =
18/gcd(m, 18) = 6. Thus, we can have m = 3, 15.

Fact: If G is cyclic of order n, G =< a >, then < am1 >=< am2 > ⇐⇒ gcd(m1, n) =
gcd(m2, n)

Corollary. If G is cyclic of order n, for any d|n, there is eactly one subgroup of order d in
G.

Proof. If H =< am >,H = n/gcd(m,n) = d =⇒ gcd(m,n) = n
d . For example if m = n

d , then
gcd(m,n) = gcd(nd , n) =

n
d . | < a

n
d > | = d. Uniqueness follows from the above fact. ■

Example. Klein 4 Group

∗ e a b c
e e a b c
a a e c b
b a c e a
c c b a e

< a >= {e, a}, < b >= {e, b}, < c >= {e, c}.

1.8 Generators

Let H ≤ G and a, b ∈ G. Then < a, b > is the subgroup generated by a, b which is the set of
all combinations of a, b.

Example. ab−1a2b3 ∈< a, b >, (ab−1a2b3)−1 = (b−3a−2ba−1) ∈< a, b >, e = a0 ∈< a, b >

In general, {ai, i ∈ I} ⊂ G. This is the subgroup of G generated by ai, i ∈ I.

Fact: If Hj , j ∈ J are subgroups of G, then ∩j∈JHj is a subgroup of G.

• e ∈ Hj for all j, so e ∈ ∩j∈JHj .

• If a, b ∈ ∩j∈JHj then a, b ∈ Hj ∀j, so ab−1 ∈ Hj for all j. So ab−1 ∈ ∩j∈JHj

We can also consider < ai, i ∈ I >= the intersection of all subgroups of G which contain
ai, i ∈ I.

Proof. ⊆:< ai, i ∈ I >⊆ any subgroup of G which contain all the ai.

⊇:< ai, i ∈ I > is a subgroup of G and contains all the ai. ■
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Definition. If G is generated by a finite number of elements, G =< a1, ..., Gk >, then G is
called finitely generated.

Example. (Q,+) is not finitely generated. Let a1

b1
, ..., an

bn
∈ Q, then

H =<
a1
b1
, ...,

an
bn

>= {t1
a1
b1

+ ...+ tn
an
bn

; t1, ..., tn ∈ Z}

Let p be a prime number such that p > b1, ..., bn. Then 1
p /∈ H. If 1

p = t1a1

b1
+ ... + tan

bn
=

A
b1,...bn,A∈Z . so pA = b1...bn but p not divisible b1...bmn.

1.9 Dihedral Group Revisited

Diheral group Dn with n ≥ 3, with |Dn| = 2n. We can have ρ = (1, 2, ..., n) which is a
counter-clockwise rotation by 2π

n . µ is a reflection with respect to x-axis, such that µ2 = e.
Then,

Dn = {e, ρ, ρ2, ..., ρn−1, µ, µρ, ..., µρn−1}

Note that by definition and using inversees, µρi = ρn−iµ∀1 ≤ i ≤ n.

We can also describe this as Dn =< ρ, µ >.
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2 Structure of Groups

2.1 Permutation Groups

Definition. ϕ : G→ G′ is called a homomorphism if ∀a, b ∈ G, ϕ(ab) = ϕ(a)ϕ(b).

Example.

• G
ϕ−→ G′, ϕ(a) = e′ is a homomorphism.

• Zn
ϕ−→ Dn, [i] 7→ ρi is a homomorphism. This is one-to-one but not onto.

• GL2(R) = {
[
a b
c d

]
|a, b, c, d ∈ R, ad− c ̸= 0} group under matrix multiplication.

GL2(R) → (R− {0}, ·).

Proposition. If ϕ : G→ G′ is a homomorphism, then

1. ϕ(e) = e′

2. ϕ(a−1) = ϕ(a)−1 ∀a ∈ G

3. If H ≤ G, then ϕ(H) ≤ G′ where ϕ(H) = {ϕ(a)|a ∈ G}.

4. If K ≤ H ′, then ϕ−1(K) ≤ G where ϕ−1(k) = {a ∈ G|ϕ(a) ∈ K}

Proof. (1). ϕ(ee)︸ ︷︷ ︸
ϕ(e)

= ϕ(e)ϕ(e) so e′ = ϕ(e).

(2). ϕ(a)ϕ(a−1) = ϕ(aa−1) = ϕ(e) = e′, and ϕ(a−1)ϕ(a) = ϕ(a−1a) = ϕ(e) = e′, so ϕ(a−1) is
inverse of ϕ(a).

(3). H ≤ G so e ∈ H, so ϕ(e) ∈ ϕ(H) =⇒ e′ ∈ ϕ(H).

If x, y ∈ ϕ(H), then there are a, b ∈ H such that ϕ(a) = x and ϕ(b) = y. So, xy−1 =
ϕ(a)ϕ(b)−1 = ϕ(a)ϕ(b−1) = ϕ(ab−1) ∈ ϕ(H).

(4). Exercise ■

Theorem. [Cayley’s Theorem]

Let SA be a group of permutations of set A. Then ∀ group G, ∃ set A and a one-to-one
homomorphism ϕ : G→ SA. So, G is isomorphic to ϕ(G), and ϕ(G) ≤ SA.

Example.

• G = Dn, Dn ≤ Sn.

• G = Zn, then Zn → Sn

• G = GL2(R). If A ∈ GL2(R) then R2 −−→
fA

R2,

[
x
y

]
7→ A

[
x
y

]
is one-to-one and ontto so

fA is a permutation of R2. In addition, fAB = fA ◦ fB , so GL2(R)
ϕ−→ SR2 , A 7→ fA iss a

group homomorphism. ϕ is one-to-one: If fA = fB , then A

[
x
y

]
= B

[
x
y

]
∀x, y ∈ R. Then

A = b

13



Proof. If g ∈ G, then the function λg : G→ G has λg(x) = gx.

λg one-to-one: If λg(x) = λg(y), then gx = gy, so x = y.
λg onto: ∀y ∈ g, λg(g

−1y) = gg−1y = y.

So, λg ∈ SGNote that λg is not a group homomorphism, as gxy ̸= gxgy

So, we have the map ϕ : G→ SG, g 7→ λg.

Now, we want to show that ϕ is one-to-one homomorphism:

ϕ is a homomorphism:

ϕ(g1g2)︸ ︷︷ ︸
λg1,g2

(x)

= ϕ(g1) ◦ ϕ(g2) =⇒ λg1,g2(x) = g1g2(x) = λg1(g2x) = λg1 ◦ λg2(x)

ϕ is one-to-one: If ϕ(g1) = ϕ(g2), then λg1 = λg2 , so ∀x ∈ G, λg1(x) = λg2(x), so g1x =
g2x =⇒ g1 = g2 ■

Definition. Let ϕ : G→ G′ be a homomorphism. The kernel of ϕ is

ker(ϕ) := {a ∈ G;ϕ(a) = e′} = ϕ−1 ({e′})

Note that since {e′} ≤ G′, ker(ϕ) ≤ G.

Example. ϕ : Z → Zn, a 7→ [remainder of n/a]. ker(ϕ) = nZ

Proposition. ϕ one-to-one ⇐⇒ ker(ϕ) = {e}

Proof. =⇒: Clear

⇐=: If ϕ(a) = ϕ(b), then ϕ(a) = ϕ(b)−1 = e′. So ϕ(a)ϕ(b−1) = e′ =⇒ ϕ(ab−1) = e′, so
ab−1 = e =⇒ a = b ■

2.1.1 Odd and even permutation

Definition. A 2-cycle is called a transposition

In general, if (a1, a2, ..., am−1, am) ∈ Sn, then (a1, a2, ..., am) = (a1, am)(a1, am−1)...(a1, a2).

Every σ ∈ Sn is a product of transpositions that is not unique

Example. σ = (1, 2, 4)(3, 6) = (1, 4)(1, 2)(3, 6)

Theorem. If σ ∈ Sn, then σ cannot be written both as a product of an even number of
transpositions and as a product of an odd number of transpositions.

Let σ = (a1, b1) . . . (ak, bk). σ is an odd/even permutation if k is odd/even.

In general, ∀n, the number of odd permutations and even permutations is the same.

An := set of even permutations ⊂ Sn, Bn := set of odd permutations ⊂ Sn

Proof. Let σ be any 2-cycle. Define λτ : An → Bn, σ 7→ τσ.

λτ is onto and one-to-one:
Onto: If ρ ∈ Bn, then τρ ∈ An and λτ (τρ) = ττ︸︷︷︸

e

ρ = ρ

One-to-one: τσ1 = τσ2 =⇒ σ1 = σ2. Thus, |An| = |Bn| ■
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Proposition. An is a subgroup of order n!
2 in Sn.

Proof. • e ∈ An

• σ1, σ2 ∈ An ten σ1σ2 ∈ An

• If σ ∈ An, σ = (a1, b1) . . . (ak, bk), σ
−1 = (ak, b) . . . (a1, b1) ∈ An

■

An is the alternating group on n elements.

If σ ∈ Sn, we can define

sign(σ) =

{
1, if σ even

−1, if σ odd

{1,−1} is a group under multiplication.

Here, sgn : Sn → {1,−1} is a homomorphism with sign(σ1σ2) = sign(σ1)sign(σ2).

Thus, ker(sgn) = An

2.2 Finitely Generated Abelian Groups

Direct product of groups Let G1, G2 be two groups. The cartesian product of G1, G2 is G1 ×
G2 = {(a1, a2); a1 ∈ G1, a2 ∈ G2}

Group operation on G1 × G2 is defined as (a1, a2)(b1, b2) = (a1b1, a2b2). Identity = (e1, e2).
Inverse of (a1, a2) = (a−1

1 , a−1
2 ).

This ia a group, called the direct product of G1, G2.

Example. Z2 × Z2 = {([0], [0])︸ ︷︷ ︸
a

, ([0], [1])︸ ︷︷ ︸
b

, ([1], [0])︸ ︷︷ ︸
c

, ([1], [1])︸ ︷︷ ︸
d

}. Here, a2 = b2 = c2 = e. So

Z2 × Z2 not isomorphic to Z4.

Example. Z2 × Z3 :< ([1], [1]) >= {(0, 0), (1, 1), (0, 2), (1, 0), (0, 1), (1, 2)}. Thus Z2 × Z3 is
cyclic so Z2 × Z3 ≃ Z6.

Proposition. Zm × Zn is cyclic (therefore isomorphic to Zmn) if and only if gcd(m,n) = 1.

Proof. ⇐= If gcd(m,n) = 1, then Zm × Zn =< ([1], [1]) >.

If order of ([1], [1]) is k,then ([k], [k]) = ([0], [0]), so m
∣∣ n and n

∣∣ k. Since gcd(m,n) = 1, we get

nm
∣∣ k so k ≥ mn =⇒ order of ([1], [1]) = mn, so ([1], [1]) generates the group.

“=⇒”: If gcd(m,n) = d > 1, then if ([a], [b]) ∈ Zn × Zm,

nm

d
([a], [b]) = ([

anm

d
,
bnm

d
]) = ([0], [0])

and nm
d < nm, so G is not generated by only ([a], [b]) so G is not cyclic. ■

More generally, for G1, ..., Gk, the direct product is

G1 × . . .×Gk = {(a1, ..., ak)|ai ∈ Gi, 1 ≤ i ≤ k}
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with natural rules of operations, identity, and inverses. Then, Zn1
× . . . × Znk

≃ Zn1...nk
if

gcd(ni, nj) = 1∀i ̸= j.

Proposition.

• G1 ×G2 ≃ G2 ×G2. ϕ : G1 ×G2 → G2 ×G1, (a, b) 7→ (b, a) is an isomorphism.

• If H1 ≤ G1 and H2 ≤ G2, then H1 ×H2 ≤ G1 ×G2.

Example. Z2 × Z2. H = {([0], [0]), ([1], [1])} ≤ Z2 × Z2 is not of the form H1 ×H2

Proposition. Zn1
× Zn2

× . . .× Znk
is cyclic if and only if gcd(ni, nj) = 1,i ̸= j

2.3 More on Finitely Generated Abelian Groups

Theorem. Every finitely generated abelian group is isomorphic to

Zp
n1
1

× Zp
n2
2

× . . .× Zp
nk
k

× Z× . . .× Z︸ ︷︷ ︸
m times

where pi are prime numbers, ni ≥ 1 where pi not necessarily distinct.

Example. Find, up to isomorphism, all abelian groups of order 72.

Notice that abelian groups of order 8 are Z8,Z2 × Z4,Z2 × Z2 × Z2. Abelian grous of order 9
up to isomorphism are Z9,Z3 × Z3. Thus, there are 3× 2 = 6 groups.

Corollary. if G is abelian of order n and m
∣∣ n then G has a subgroup of order m. Then G

has a subgroup of order m.

Remark: You can show that A4 has no subgroup of order 6.

Proof. If G =< a > is cyclic with |G| = n, m
∣∣ n,

| < a
n
m > | = n

gcd( n
m , n)

=
n
n
m

= m

If G is arbitrary by the theorem but abelian, G = Zp
n1
1

× . . .× Znk
pk
, then m = pm1

1 . . . pmk

k .

Since Zp
ni
i

cyclic, and since pmi
i

∣∣ pni
i , Zp

ni
i

has a subgroupHi of order P
mi
i . ThenH1×. . .×Hk ≤

G and has order Pm1
1 × . . .× Pmk

k = m. ■

2.4 Cosets

Let H ≤ G. We say a ∼ b if and only if a−1b ∈ H

• Reflexive: a−1a = e ∈ H

• Symmetric: a−1b ∈ H =⇒ (a−1b)−1 = b−1a ∈ H

• Transitive: a−1b, b−1c ∈ H =⇒ ac−1 ∈ H

So, we get a partition of G as the disjoint union of equivalence class.

Definition. Let a ∈ G. The equivalence class containing a is aH, the left coset of H is:

{x ∈ G|a ∼ x} = {x ∈ G|a−1x = h ∈ H} = {x ∈ G
∣∣ x = ah, h ∈ H} = aH

Example. G = S3 = {e, (1, 2), (1, 3), (2, 3), (1, 2, 3), (1, 3, 2)} = {e, τ1, τ2, τ3, σ, σ2} Here,
H = {e, σ, σ2} ≤ S3. Then, the left cosets of H are
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• eH = σH = H = σ2H = {σ2, e, σ} = H

• τ1H = {τ1, τ1σ, τ1σ2} = {τ1, τ2, τ3} = τ2H = τ3H

Proposition.

• aH = bH ⇐⇒ a ∼ b

• a ∈ aH

• aH = H ⇐⇒ a ∈ H

• aH is a subgroup of G ⇐⇒ aH = H

Proof. If aH ≤ G, e ∈ aH. So e = ah =⇒ a−1 ∈ H =⇒ a ∈ H, so a ∈ H =⇒ ah = H ■

Example. Let G = (Z,+). H =< 5 >= {5n|n ∈ Z}. All the left cosets of H can be given by

• 0 +H = {5n|n ∈ Z} = 5 +H

• 1 +H = {5n+ 1|n ∈ Z} = 6 +H

• 2 +H = {5n+ 2|n ∈ Z} = 7 +H

• 3 +H = {5n+ 3|n ∈ Z} = 8 +H

• 4 +H = {5n+ 4|n ∈ Z} = 9 +H

Example. Let G = (R,+), H = (Z,+) ≤ G. The left coset can be given by r + Z, r ∈ R. In
this case, there are infinitely many distinct left cosets where 0 < x < y < 1, x+ Z ̸= y + Z.

Theorem.

1. If H ≤ G, |H| = m, then every left coset of H has m elements.

2. [Lagrange’s Theorem] If H ≤ G and |G| = n, then |H|
∣∣ |G|

Proof. (1) Let aH be a left coset, then ϕ : H → aH, h 7→ ah clearly shows ϕ is one-to-one and
onto. ah1 = ah2 =⇒ h1 = h2. Thus, |H| = |aH|.

(2) Let H = m and suppose H has r distinct left cosets a1H, ..., arH. Then, |aiH| = |H| = m
and G = ∪r

i=1aiH. So, G︸︷︷︸
n

=
∑n

i=1 |aiH| = rm, so m
∣∣ n. ■

Corollary. If |G| = n and a ∈ G, then order of a divides n

Proof. Let m = ord(n) and H =< a > −{e, a, ..., am−1}.Som = |H|
∣∣ |G| = n ■

Corollary. If |G| = p where p is a prime number, then G is cyclic.

Proof. Pick e ̸= a ∈ G, then 1 ̸= ord(a)
∣∣ p, so ord(a) = p, | < a > | = p =⇒ < a >= G. ■

Definition. If H ≤ G, the number of distinct left cosets of H in G is denoted by (G : H),
the index of H in G.

If G is a finite group (G : H) = |G|
|H| .
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2.4.1 Right Cosets

We can have similar definitions with right cosets. For H ≤ G,

a ∼′ b ⇐⇒ ba−1 ∈ H

Equivalence class containing a = {x ∈ G
∣∣ a ∼′ x} = {x ∈ G

∣∣ xa−1 ∈ H} = {x ∈ G
∣∣ xa−1 =

h∀h ∈ H} = {x ∈ G
∣∣ x = ha∀h ∈ H} = Ha

Proposition.

• Ha = H ⇐⇒ a ∈ H

• Ha = Hb ⇐⇒ ab−1 ∈ H

• Ha = Hb,Ha ∩Hb = ∅∀a, b ∈ G

• Ha ≤ G ⇐⇒ a ∈ H

• If |H| <∞, then |Ha| = |H|.

Example. S3 = {e, τ1, τ2, τ3, σ, σ2}. H ≤ S3, H = {e, τ1}

All right cosets can be given by

• He = {e, τ1}

• Hτ1 = {τ1, e}

• Hτ2 = {τ2, σ2}

• Hτ3 = {τ3, σ}

• Hσ = {τ3, σ}

• Hσ2 = {σ2, τ2}

Example. G = S3, H = {e, σ, σ2} ≤ S3.

Left Cosets:

• eH = σH = σ2H = H

• τ1H = τ2H = τ3H = {τ1, τ2, τ3}

Right Cosets:

• He = Hσ1 = Hσ2 = H

• Hτ1 = Hτ2 = Hτ3 = {τ1, τ2, τ3}.

In this specific case, every left coset is a right coset.

Example. H = 5Z ≤ Z. Left cosets of H are given by 5Z, 1+ 5Z, 2+ 5Z, 3+ 5Z, 4+ 5Z. The
right cosets are 5Z, 5Z+ 1, 5Z+ 2, 5Z+ 3, 5Z+ 4.

Example. If H ≤ G and G is abelian, then

aH = Ha ∀a ∈ G
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3 Homomorphisms and Factor Groups

3.1 Factor Group

Definition. A subgroup H of G is called a normal subgroup if aH = Ha for every a ∈ G,
denoted as H ⊴ G.

Example.

• {e, σ, σ2} ⊴ S3

• {e, τ1} ⋬ S3

• An ⊴ Sn

• Every subgroup of an abelian group is normal.

• If G is finite and H ≤ G is of index 2, then H is normal.

Proof. For aH if a ∈ H, aH = Ha = H. Otherwise if a /∈ H, then aH ∩H = ∅, |aH| = |H| =
|G|
2 . Also, Ha ∩H = ∅, |Ha| = |H| = |G|

2 , so Ha = {b ∈ G|b /∈ H} = Ha ■

Proposition. If ϕ : G→ G′ is a homomorphism, then ker(ϕ) ⊴ G.

Proof. Prove that for a ∈ G, a ker(ϕ) = ker(ϕ)a, where ker(ϕ) = {b ∈ G|ϕ(b) = e′}

⊆: If b ∈ ker(ϕ), then ϕ(aba−1) = ϕ(a)ϕ(b)︸︷︷︸
e′

ϕ(a−1) = e′.

So, aba−1 ∈ ker(ϕ), let b′ = aba−1 ∈ ker(ϕ), then ab = b′a ∈ ker(ϕ)a. The ⊇ direction is
similar ■

Example. ϕ : Sn → {1,−1}, ϕ(σ) = sgn(σ), ker(ϕ) = An.

Proposition. H is normal ⇐⇒ aHa−1 = H for all a ∈ G.

Proof. ⇐=: If a ∈,we show aH = Ha.

aH ⊆ Ha: If h ∈ H, then ah−1a ∈ H, so aha−1 = h′ for some h′ ∈ H. So, ah = h′a =⇒
ah ∈ Ha

Ha ⊆ aH: If h ∈ H, then a−1Ha = H by assumption so a−1ha = h−1 ∈ h

=⇒ : Exercise ■

Proposition. H is normal in G ⇐⇒ aHa−1 ⊂ H for every a ∈ G. (This is an alternative to
the proposition above)

Proof. =⇒ : clear

⇐= We show H ⊂ aHa−1 for every a ∈ G. We have a−1H(a−1)−1 ⊂ H, so a−1Ha ⊆ H. So
for any h ∈ H, a−1ha = h′ ∈ H. So h = ah′a−1 =⇒ h ∈ aHa−1. ■

Remark: aHa−1 ≤ G for any a ∈ G.

• e = aea−1 ∈ aHa−1
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• If aha−1 ∈ aHa−1, then (aha−1)−1 = ah−1a−1 ∈ aHa−1.

• If ah1a
−1, ah2a

−1 ∈ aHa−1, then (ah1a
−1)(ah2a

−1) = a(h1h2)a
−1 ∈ aHa−1.

For 5Z ≤ Z, with left cosets a = {5Z, 5Z+1, 5Z+2, 5Z+3, 5Z+4}. Here, the group operation
on A is (a+ 5Z) ∗ (b+ 5Z) = (a+ b) + 5Z. But can we always do this:

H ≤ G. Let A be set of left cosets of H in G, such that (aH)(bH) = abH? Is this a group
operation?

• Associativity: (aHbH)cH = abHcH = (ab)cH = a(bc)H = (aH)(bcH) = aH(bHcH).
This works.

• Identity: (eH)(aH) = eaH = aH

• Inverse: (a−1H)(aH) = (aH)(a−1H) = eH

However, this is not a group operation because this may not be well defined.

From previous sections, we had left cosets of H = {e, τ1} ≤ S3:

• eH = τ1H = H = {e, τ1}

• τ2H = σH = {τ2, σ}

• τ3H = σ2H = {τ3, σ2}.

Here, (τ2H)(τ2H) = τ22H = eH = H but (σH)(σH) = σ2H ̸= H, while τ2H = σH

Definition. An operation if well-defined if aH = a′H and bH = b′H =⇒ abH = a′b′H

Fact: If H ≤ G, then the operation

(aH)(bH) = (ab)H

is well defined (and therefore is a group operation on the set of left cosets of H) if and only if
H ⊴ G.

Proof. First, suppose H ⊴ G. If aH = a′H and bH = b′H, then a−1a′, b−1b′ ∈ H. We want to
show that abH = a′b′H (or therefore, b−1a−1a′b′ ∈ H.)

Let h1 = a−1a′, h2 = b−1b′. Then b−1a−1a′b′ = b−1h1b
′ = b−1h1bh2 = (b−1h1b)h2 ∈ H, so

abH = a′b′H.

Next, suppose the operation is well-defined. To show H ⊴ G, we show aha−1 ∈ H for every
a ∈ G, h ∈ H.:

We have hH = eH, a−1H = a−1H. So,

(hH)(a−1H) = (eH)(a−1H) =⇒ (ha−1)H = a−1H =⇒
(
a−1

)−1
ha−1 ∈ H =⇒ ah−1a ∈ H

■

Definition. IfH ⊴ G, operation (aH)(bH) = abH on the set of left cosets is a group operation,
denoted as G/H, the factor group of G by H.

Example. 5Z ⊴ Z then Z/5Z ≃ Z5

Proposition.
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1. If N ⊴ G, then there is a natural onto homomorphism ϕ : G→ G/N, ϕ(a) = aN , where

kerϕ = {a ∈ G|ϕ(a) = N} = {a ∈ G|aN = N} = N

Corollary. Converse of Lagrange’s Theorem is not true. For example, A4 has no subgroup
of order 6.

Proof. If H is a subgroup of order 5 in A4, then (A4 : H) = 2. So H is normal. If we look at the
factor grouo A4/H, |A4/H| = 2 =⇒ ∀σ ∈ A4, (σH)(σH) = eH ∈ A4/H. Hence σ2H = H, so
σ2 ∈ H ∀σ ∈ A4. However, in A4, |H| ≥ 8 so this is not possible. ■

Proposition. If ϕ : G→ G′ is a homomorphism, then

G/ kerϕ ≃ im(ϕ)

(ker(ϕ) ⊴ G, im(ϕ) = ϕ(G) ≤ G′)

Proof. Define ψ : G/ ker(ϕ) → im(ϕ) by ψ(a ker(ϕ)) = ϕ(a). This is well-defined because if
a kerϕ = b kerϕ, then a−1b ∈ ker(ϕ) =⇒ ϕ(a−1b) = e′ =⇒ ϕ(a)−1ϕ(b) = e′, so ϕ(b) = ϕ(a).

ψ is clearly a homomorphism: ψ(a ker(ϕ)b ker(ϕ)) = ψ(ab ker(ϕ)) = ϕ(ab) = ϕ(a)ϕ(b) =
ψ(a ker(ϕ))ψ(b ker(ϕ)).

Then, ψ onto: For any ϕ(a), ψ(aN) = ϕ(a). Meanwhile ψ one-to-one: If ψ(a kerϕ) = ψ(b kerϕ),
then ϕ(a) = ϕ(b) =⇒ ϕ(a−1b) = e′, so a−1b ∈ kerϕ =⇒ a kerϕ = b kerϕ. ■

Example. If ϕ : G −→ G′ is a homomorphism which is not trivial (not every g ∈ G is sent
to e′) with |G′| = 15, |G| = 18, what is | kerϕ|?

Known: 18 = |G|/| ker(ϕ)| = |im(ϕ)|

Example. Factor groups:

• G/G ≃ {e}

• G/{e} ≃ G

• Z/nZ ≃ Zn.ϕ : Z −→ Zn =⇒ Z/ kerϕ ≃ im(ϕ) =⇒ Z/nZ ≃ Zn.

• Z× Z/ < (1, 1) >

For group G with N ⊴ G, the group structure of G/N is aNbN = abN . The order is |G/N | =
(G : N), the index of N with G.

Example. Z12/⟨[4]⟩ has
∣∣Z12/⟨[4]⟩

∣∣ = 12
3 = 4. Here, the order is not 2 so Z12/N is not

Z2 × Z2, and Z12/N ∼ Z4.

Proposition. If G is cyclic and N ⊴ G, then G/N is cyclic.

Proof. If G = ⟨a⟩, then show that G/N is generated by aN . If bN is given, then b = am for
some m, so bN = amN = (aN)m. ■

Example. Z× Z/⟨(1, 1)⟩ ≃ Z. Then, (a1, b1) ∼ (a2, b2) ⇐⇒ a1 − a2 = b1 − b2.

To show this, define ϕ : Z× Z → Z by ϕ(a, b) = a− b. Then, since
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• ϕ is homomorphism

• ϕ onto: If n ∈ Z, then ϕ(n, 0) = n.

• kerϕ = {(a, b)|a− b = 0} = ⟨(1, 1)⟩

Together, this implies that Z× Z/⟨(1, 1)⟩ ≃ Z, where kerϕ = ⟨(1, 1)⟩, im(ϕ) = Z.

Example. Z× Z/⟨(2, 1)⟩ ≃ Z.

Notice that G = {a
2 |a ∈ Z} ≤ Q. Then we can define ψ : G → Z, g 7→ 2g as a homomorphism

that is clearly one-to-one and onto. Thus, ψ is clearly an isomorphism.

Then, define ϕ : Z× Z → Z such that ϕ((a, b)) = a− 2b. Then,

• ϕ homomorphism

• ϕ onto: If n ∈ Z, ϕ((n, 0)) = n.

• kerϕ = {(a, b)|a− 2b = 0} = ⟨(2, 1)⟩

Together, this implies Z× Z/⟨(2, 1)⟩ ≃ Z.

Example. Z× Z/⟨(2, 2)⟩ ≃ Z× Z2.

Define ϕ((a, b)) = (a− b, 0) if a even and (a− b, 1) is a is odd. Then,

• ϕ homomorphism

• ϕ onto: If (n, 0) ∈ Z×Z2, then ϕ(2n, n) = (n, 0). If (n, 1) ∈ Z×Z2, then ϕ(2n+1, n+1) =
(n, 1).

• kerϕ = {(a, b)|a− b = 0, a even} = ⟨(2, 2)⟩.

3.2 Simple Group

Definition. A group G is simple if G has no proper, non-trivial normal group.

Example. Any finite group of order is simple.

Example. An for n ≥ 5 is simple.

3.2.1 Center of Groups

Definition. We define for a group G its center as

Z(G) := {z ∈ G
∣∣ zg = gz ∀g ∈ G}

Proposition. Z(G) is a normal subgroup of G.

Proof. First, Show Z(G) is a subgroup:

• eg = ge∀g ∈ G =⇒ e ∈ Z(G)

• z1, z2 ∈ Z(G) =⇒ z1z2g = z1gz2 = gz1z2, so z1z2 ∈ Z(G).

• If z ∈ Z(G), zg−1 = g−1z∀g, so (zg−1) = (g−1z)−1 =⇒ gz−1 = z−1g =⇒ z−1 ∈ Z(g)

Then, to show Z(G) ⊴ G: If g ∈ G, z ∈ Z(G), then gzg−1 = gg−1z = z ∈ Z(G). ■

22



Proposition. Group G is abelian ⇐⇒ Z(G) = G.

Example. Z(GLn(R)) = {rIn
∣∣ r ∈ R}

3.2.2 Commutator of Groups

Definition. Let G be a group with a, b ∈ G. Then the commutator of a, b is defined as

[a, b] = aba−1b−1

Properties:

• [a, b] = e ⇐⇒ ab = ba

• [a, b]−1 = (aba−1b−1)−1 = bab−1a−1 = [b, a]

Definition. The commutator subgroup G′ is the subgroup generated by all commutators

G′ = ⟨[a, b]
∣∣ a, b ∈ G⟩ = {[a1, b1], ..., [an, bn]}

Proposition. G′ ⊴ G

Proof. To show g[a, b]g−1 ∈ G,

g[ab]g−1 = gaba−1b−1g−1 = gag−1gbg−1ga−1g−1gb−1g−1 = [gag−1, gbg−1] ∈ G′

Proposition. G/G′ abelian

Proof. The is to prove aG′bG′ = bG′aG′.

b−1a−1ba = [b−1, a−1] ∈ G′ =⇒ (ab)−1(ba) ∈ G′ =⇒ abG′ = baG′

■

Proposition. If N ⊴ G and G/N abelian, G′ ≤ N.

Exercise: Let G = S3. What is G′?.

We know A3 has index 2 in S3, so A3 ⊴ S3, and S3/A3 has two elements so S3/A3 ≃ Z2, so it
is abelian, so G′ ≤ A3.

Check other side, then we get G′ = A3

3.3 Groups Acting on Sets

Definition. Let G be a group acting on sets. Then a set X is a G-set or G acts on X if
there is a function

G×X −→ X, (g, x) 7→ g · x

such that

• e · x = x ∀x ∈ X

• g2 · (g1 · x) = (g2g1) · x ∀x ∈ X, g1, g2 ∈ G.
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Proposition. If X is a G-set, then the function σg : X → X, σg(X) = g · x is one-to-one and
onto. Thus, σg is permutation of X, where σg ∈ Sx.

Proof. 1-to-1: If g · x = g · y, then g−1 · (g · x) = g−1 · (g · y) =⇒ e · x = e · y =⇒ x = y.

Onto: If y ∈ X, then let x = g−1 · y ∈ X. Then, g · x = g · (g−1 · y) = e · y = y. ■

Proposition. The function ϕ : G→ SX , ϕ(g) = σg is a group homomorphism.

Proof. If g1, g2 ∈ G,ϕ(g1g2)(x) = σg1,g2(x) = (g1 · g2) · x = g1 · (g2 · x).

Also, (ϕ(g1)·ϕ(g2))(x) = ϕ(g1)(ϕ(g2)·x) = g1·(g2·x). They are equal and form a homomorphism.
■

Example.

• Let G = GLn(R), X = Rn. If A ∈ GLn(R), v ∈ Rn then we can define group action
A · v = Av so that I · v = v ∀v, (AB)v = A(Bv).

• Trivial action: For some groups G,X, g · x = x, ∀g ∈ G, x ∈ X

• Sn acting on {1, ..., n} is a group action.

• Group G acting on itself by multiplication is a group action: X = G, g · x := gx. Then,
e · x = ex = x and (g1g2)x = g1(g2x).

• Group G acting on itself by conjugation is a group action: X = G, g · x := gxg−1.
Then, e · x = exe−1 = x. Meanwhile, (g1g2) · x = g1g1x(g1g2)

−1 = g1g2xg
−1
2 g−1

1 and
g1 · (g2 · x) = g1 · (g2xg−1

2 ) = g1g2xg
−1
2 g−1

1 . Thus they are equal.

Definition. Let G act on X then for any x ∈ X, we define the isotropy group as

Gx := {g ∈ G
∣∣ gx = x}

Proposition. If X is a G-set, then ∀x ∈ X,Gx ≤ G.

Proof. • e ∈ Gx : ex = x

• If g1, g2 ∈ Gx, then g1x = x, g2x = x =⇒ (g1g2)x = g1(g2x) = g1x = x =⇒ g1g2 ∈ G.

• If g ∈ Gx, then gx = x. Then g−1gx = g−1x =⇒ g−1x = x =⇒ g−1 ∈ Gx.

■

Definition. [Orbit] If G acts on X and x ∈ X, then orbit of X is

Gx := {gx
∣∣ g ∈ G} ⊂ X

Proposition. If x and y are in the same orbit, we write x ∼ y. In fact, this is an equivalence
relationship, where y = gx∃g ∈ G

• x ∼ x : x = ex

• x ∼ y =⇒ y ∼ x : y = gx =⇒ g−1y = g−1gx = x, so y ∼ x

• Transitive: If y = gx, z = g′y, then z = g′gx = (g′g)x =⇒ z ∼ x.
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Theorem. If G acts on X and x ∈ X, then

|Gx| = (G : Gx)

where Gx is the orbit of x and (G : Gx) is the number of left cosets of Gx.

Proof. Define ϕ : cosets of Gx in G −→ Gx, where ϕ(aGx) = a · x, a ∈ G.

• ϕ well-defined: aGx = bGx =⇒ a−1b ∈ Gx =⇒ a−1bx = x =⇒ ax = bx.

• ϕ is 1-to-1: bx = ax =⇒ a−1bx = x =⇒ ab−1 ∈ Gx =⇒ bGx = aGx.

• ϕ onto: ϕ(aGx) = ax

Thus, (G : Gx) = |Gx| ■

Definition. For group G acting on X, define XG := {x ∈ X
∣∣ g · x = x∀g ∈ G} ⊆ X. Note

that x ∈ XG iff the orbit of x has only one element.

Theorem. If G is a group with |G| = pn for prime p and X is a G-set, then

|X| ≡ |XG| mod p

Proof. Let Gx1, ..., Gxr be all distinct orbits with more than one element. then,

|X| = |XG|+
r∑

i=1

|Gxi| = |XG|+
r∑

i=1

(G : Gxi)

Recall that |Gxi| > 1 and G is finite, so (G : Gxi
) = |G|

|Gxi
| =

pn

|Gxi
| > 1 =⇒ |Gxi

| is a multiple

of p.

Then, p
∣∣ (G : Gxi) ∀1 ≤ i ≤ r =⇒ p

∣∣ ∑r
i=1(G : Gxi) =⇒ |X| ≡ |XG| mod p ■

Example. Suppose D4 is acting on {1, 2, 3, 4}. |D4| = 8 and p = 2. This means that |X|, |XG|
must be both odd or both even.

Example. If Z11 is acting nontrivially on X and X and |X| = 20, what is |XG|?
Since action is non-trivial, |XG| ≠ 20 so it has to be the case that |XG| = 9.

Theorem. [Cauchy’s Theorem] If p
∣∣ |G|, then G has a subgroup of order p, equivalently

G has an element of order p.

Proof. Let X = {(g1, .., gp)
∣∣ g1, ..., gp ∈ G, g1...gp = e}. Then |X| = ||G| × . . . × |G| =

|G|p−1 =⇒ p
∣∣ |x|.

Then, let G = Zp act on X by shifting so that i · (g1, ..., gp) = (gi+1, ..., gi). To verify that this
is a group action, 0 · (g1, ..., gp) = (g1, ..., gp) and (i+ j) · (g1, ..., gp) = i · (j · (g1, ..., gp)).

Since |G| = |Zp| = p, we get |X| ≡ |XG| mod p, where

XG = {(g1, ..., gp) ∈ X
∣∣ i · (g1, ..., gp) = (g1, ..., gp), 0 ≤ i ≤ p− 1} = {(a, ..., a)

∣∣ ap = e}

Since p
∣∣ |X|, we have p

∣∣ |XG| =⇒ |XG| ≥ p, so ∃(a, ..., a) ∈ XG, a
p = e, a ̸= e. ■

Remark:
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1. If G is abelian and m
∣∣ |G|, then G has a subgroup of order m.

2. |A4| = 12, but A4 has no subgroup of order 6.

3. If p = 2, then any group with even number of elements has an element of order 2, and
a2 = e =⇒ a = a−1

Corollary. If |G| = pn with p prime, then Z(G) ̸= {e}.

Proof. Let X = G and let G act on X by conjugation: g · x = gxg−1.

XG = {x ∈ X
∣∣ g · x = x∀g} = {x ∈ G

∣∣ gxg−1 = x∀g ∈ G} = {x ∈ G
∣∣ gx = xg} = Z(G)

Then by theorem,{
|X| ≡ |XG| mod p

p
∣∣ |X|

=⇒

{
p
∣∣ |XG|

e ∈ XG, so 1 ≤ |XG|
=⇒ |XG| ≥ p, so Z(G) ̸= {e}

■

Corollary. If |G| = p2, then G is abelian. So, G ≃ Zp2 , or Zp × Zp.

Proof. From previous corollary, it is clear that |Z(G)| > 1. Since Z(G) ≤ G, |Z(G)|
∣∣ p2 =⇒

|Z(G)| = p or |Z(G) = p2| ■
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4 Rings and Fields

4.1 Rings and Fields

Definition. A ring is a set R with 2 binary operations +(addition) and ·(multiplication),
denoted as (R,+, ·) such that

• (R,+) is an abelian group, with identity 0.

• · is associative

• Distributivity holds: (a+ b) · c = a · c+ b · c and a · (b+ c) = a · b+ a · c

Example.

• (Z,+, ·), (Q,+, ·), (R,+, ·) are rings.

• (Mn(R),+, ·) is a ring.

• (2Z,+, ·) is a ring.

• (Zn,+, ·) is a ring with · operation being [a] · [b] = [remainder of ab].

Properties of Rings.

1. 0 · a = a · 0 = 0

2. (−a) · b = a · (−b) = −(ab)

3. (−a)(−b) = ab

Proof. (1). 0 · a = (0 + 0) · a =⇒ 0 = 0ȧ.

(2). (−a) · b+ a · b = (a− a) · b = 0 =⇒ (−a) · b = −(a · b)

(3). (−a)(−b) = −(−ab) = ab ■

Definition. Let (R,+, ·) be a ring. Then

• R is a commutative ring if ab = ba∀a, b

• R is a ring with unity if it has a multiplicative identity, where a1 = 1a = a ∀a

• R is a division ring if R has unity and every non-zero a has a multiplicative inverse,
where a ̸= 0 ∈ R =⇒ ∃b ∈ R such that ab = ba = 1

• R is a Field if it is a commutative division ring.

Example.

• Commutative Ring: (Q,+, ·) is commutative but (Mn(R),+, ·) is not.

• Ring with Unity: (Mn(R),+, ·) has unity but (Z2,+, ·) has no unity.

• Division Ring: (Q,+, ·) is a division ring but (Z,+·) is not.

• Field: (Q,+, ·), (R,+, ·), (C,+, ·) are fields.

Definition. A element a in ring R is a unit if it has a multiplicative inverse, ∃b ∈ R such
that ab = ba = 1.

Remark: A unity is unique if it exists.
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Example. R = {a+ bi+ cj+dk
∣∣ i, j, k, 1 follow quarternion group} is a division ring but not

a field.

Definition. If R is a ring and a, b ∈ R are non-zero but ab = 0, then a, b are called
zero-divisor.

Proposition. A unit in R is never a zero-divisor.

Example. Zn is a ring. Then for Z6, [2], [3], [4] are zero-divisors. [1], [5] are units.

Proposition. More generally in Zn, with 1 ≤ m ≤ n− 1,

[m] is a unit ⇐⇒ gcd(m,n) = 1

[m] is a zero-divisor ⇐⇒ gcd(m,n) > 1

Proof. (1). “ ⇐=: ” If gcd(m,n) = 1, then 1 = am+ bn for a, b ∈ Z. If r is the remainder of a
by n, a = sn+ r, then 1 = snm+ rm+ bn = rm+ (sn+ b)n, so [r][m] = [1] in Zn. Thus, m is
a unit.

“ =⇒ ”: If [m] is a unit, then [r][m] = 1 for some r ∈ Zn. So, rm = 1+nq ⇐⇒ 1 = rm−nq
for some q ∈ Z. Thus, [m] is a unit.

(2).⇐=: If gcd(m,n) > 1, then m = m1d, n = n1d, where m1, n1 ∈ Z. So, mn1 = m1dn1 =
m1n =⇒ [m][n1] = 0 =⇒ m is a zero-divisor.

=⇒ : If [m] is a zero-divisor, then [m] is not a unit. From previous result, gcd(m,n) ̸= 1 =⇒
gcd(m,n) > 1. ■

Corollary. If p prime, Zp is a field.

Definition. A ring R is an integral domain if R is commutative with unity and no zero-
divisors.

Remark: In an integral domain, multiplicative canellation law holds.

Example. (Z,+, ·) is an integral domain. (Zn,+, ·) is an integral domain ⇐⇒ n is prime.

Definition. If R,R′ are rings, then ρ : R→ R′ is a ring homomorphism if

• ϕ(a+ b) = ϕ(a) + ϕ(b)

• ϕ(ab) = ϕ(a)ϕ(b)

If ϕ is also one-to-one and onto, then ϕ is a ring isomorphism

Example. ϕ : (Z,+, ·) → (2Z,+, ·).ϕ(a) = 2a. Here, ϕ(ab) ̸= ϕ(a)ϕ(b) =⇒ ϕ is not a ring
homomorphism.

Example. ϕ : (Z,+, ·) → (Zn,+, ·), ϕ(a) = [remainder of a by n]. Then, ϕ is a ring
homomorphism.

Fact: If R is a ring with unity, then the unit elements in R form a group under multiplication.

Example. In Z5 under multiplication, the unit elements are {[1], [2], [3], [4]}. In particular,
{[2], [4]} are generators and it is thus isomorphic to Z4 .

Fact: For any prime p, Zp − {[0]} is a group under multiplication, denoted as Z×
p .

Useful Number theory equivalances
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• a ≡ b mod n ⇐⇒ n
∣∣ a− b

• a ≡ b mod n ⇐⇒ ar ≡ br mod n

• a ≡ b mod n ⇐⇒ ca ≡ cb mod n ∀c

Theorem. [Fermat’s Little Theorem]. If a ∈ Z and p prime such that gcd(a, p) = 1, then

ap−1 ≡ 1 mod p

Proof. |Z×
p | = p − 1. So ∀[m] ∈ Z×

p , [m]p−1 = [1]. So, remainder of mp−1 by p is 1, which is
saying mp−1 ≡ 1 mod p.

Now, if a ∈ Z, gcd(a, p) = 1, and m is remainder of a by p. Then 1 ≤ m ≤ p − 1, so a ≡ m
mod p =⇒ ap−1 ≡ mp−1 ≡ 1 mod p ■

Corollary. If p is prime and a ∈ Z, then

ap ≡ a mod p

Proof. If p
∣∣ a, then p ∣∣ ap =⇒ ap ≡ a ≡ 0 mod p.

Otherwise if p ∤ a, then gcd(p, a) = 1. ap−1 ≡ 1 mod p =⇒ ap ≡ a mod p. ■

Example. Find remainder of 40100 by 19.

Note that 40 ≡ 2 mod 19. 4090 ≡ 4018 ≡ 1 mod 19 =⇒ 40100 ≡ 4010 ≡ 210 ≡ 322 ≡ 132 ≡
(−6)2 ≡ 17 mod 19

Example. Prove 15
∣∣ n33 − n ∀n ∈ Z.

General idea: Show 3
∣∣ n33 − n and 5

∣∣ n33 − n separately.

3
∣∣ n33 − n: If 3

∣∣ n, then this is obvious. If 3 ∤ n, then n2 ≡ 1 mod 3 =⇒ (n2)16 ≡ 1
mod 3 =⇒ n33 ≡ n mod 3.

5
∣∣ n33 − n: If 5

∣∣ n, then this is obvious. If 5 ∤ n, then n4 ≡ 1 mod 5 =⇒ n32 ≡ 1
mod 5 =⇒ n33 ≡ n mod 5.

Definition. If n ≥ 2 ∈ Z, then Euler’s ϕ function is ϕ(n) = the number of units in Zn.

Fact: The units of Zn form a group under multiplication: |Z×
n | = ϕ(n)

Theorem. For any a ∈ Z with gcd(a, n) = 1, it is the case that

aϕ(n) ≡ 1 mod n

Example. For Z6, [1] and [5] are units =⇒ ϕ(6) = 2. So, if gcd(a, 6) = 1, then a2 ≡ mod 6.

Example. Find remainder of 1518 by 8.

ϕ(8) = 4. If gcd(a, 8) = 1, then a4 ≡ 1 mod 8. gcd(151, 8) = 1 =⇒ remainder is 1.

Theorem. The equation ax ≡ b mod n has solution if and only if gcd(a, n)
∣∣ b. Then, there

are d := gcd(a, n) solutions in Zn.
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Proof. Case 1: gcd(a, n) = 1. Then for ax ≡ b mod n, let a = nq + r, b = np+ s.

Thus, gcd(a, n) = 1 ⇐⇒ gcd(r, n) = 1 =⇒ [r] is a unit =⇒ [r] has an inverse.

Then [r][x] = [s] in Zn =⇒ [x] = [r]−1[s] in Zn, a unique solution.

Case 2: gcd(a, n) = d. Then if ax ≡ b mod n has solution, then ax− b = nk for some k ∈ Z,
so b = ax− nk =⇒ d

∣∣ b.
Conversely, suppose d

∣∣ b, We have a = a1d, n = n1d, b = b1d and gcd(a1, n1) = 1. Then

ax ≡ b mod n ⇐⇒ n
∣∣ ax−b ⇐⇒ n1d

∣∣ d(ax−b) ⇐⇒ n1
∣∣ a1x−b1 ⇐⇒ a1x ≡ b1 mod n1

Since gcd(a1, n1) = 1, the equation has a unique solution in Zn1
so there are d solutions in

Zn. ■

Example. Solve 12x ≡ 25 mod 7

⇐⇒ 5x ≡ 4 mod 7 =⇒ [5][x] = [4] =⇒ [x] = [3][4], x = [5].

Example. Solve 4x ≡ 32 mod 20.

gcd(6, 20) = 2 =⇒ 2 solutions. 6x mod 32 mod 10 ⇐⇒ 3x ≡ 16 mod 5 ⇐⇒ 3x ≡ 6
mod 10. Thus [3]−1 = [7] =⇒ [x] = [7][6] = [2] in Z10. In Z20, the solutions are {[2], [12]}
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5 Constructing Rings and Fields

Definition. Recall that a ring D is an integral domain if it

• has a unity

• is commutative

• has no zero divisors

Then, we can construct a field F containing D, where let S = {(a, b)
∣∣ a, b ∈ D, b ̸= 0}. Then

we say (a, b) ∼ (c, d) if ad = bc.

If the equivalence class of (a, b) is [(a, b)], let F be a set of equivalence classes. Then F is a ring
with

• [(a, b)] + [(c, d)] = [(ad+ bc, bd)]

• [(a, b)][(c, d)] = [(ac, bd)]

if they are well-defined.

Checking whether this is well-defined : If (a, b) ∼ (a′, b′) and (c, d) ∼ (c′, d′), then (ad+bc, cd) ∼
(a′d′ + b′c′, b′d′)

• Identity: [(0, 1)]

• Inverse: −[(a, b)] = [(−a, b)]

• Unity: [(1, 1)]

• Let ϕ : D → F, ϕ(a) = [(a, 1)]. ϕ is a ring homomorphism and is one-to-one, [(a, 1)] =
[(b, 1)] ⇐⇒ a = b

Remark: If D is a field, then F = D. In other words, ϕ onto. If [(a, b)] ∈ F, ϕ(ab−1) = [(a, b)],
since [(ab−1, 1)] = [(a, b)]

Example. If R1, R2 are rings, R1 ×R2 = {(a, b)
∣∣ a ∈ R1, b ∈ R2}. Then{

(a, b) + (a′, b′) = (a+ a′, b+ b′)

(a, b)(a′, b′) = (aa′, bb′)
=⇒ R1, R2 a ring

Z× Z has zero divisors: (1, 0)(0, 1) = (0, 0)

[Add Everything from Notes]

5.1 Polynomial Rings

Definition. Let R be a ring. A polynomial f(x) with coefficients in R is of the form
a0 + a1x+ ...+ anx

n where x indeterminant, a1, ..., an coefficients, a0 is the constant term.

• If n is the largest integer such that an ̸= 0, f(x) has degree n.

• If f(x) is the zero polynomial (a0 = ... = an = 0), the degree is not well-defined.

• If deg(f(x)) = 0 or f(x) = 0, we say f(x) is constant

• If R has a unity, we write xk
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Let the set of all polynomials with coefficients in R be R[x]. Set

f(x) = a0 + a1x+ ...+ anx
n, g(x) = b0 + b1x+ ...+ bmx

m, n ≥ m

f(x) + g(x) = (a0 + b0) + (a1 + b1)x+ ...+ (am + bm)xm + am+1x
m+1 + ...+ anx

n

f(x)g(x) = (a0b0) + (a0b1 + a1b0)x+ ...+ anbmx
n+m, coefficient of xk =

k∑
i=1

aibk−i

Fact: R[x] is a ring.

• Identity is the zero-polynomial

• If R commutative, then R[x] commutative

• If R has unity 1, then R[x] has unity

Example. Find all polynomials of degree 2 in Z2[x]: {x2, x2 + x, x2 + 1, x2 + x+ 1}

Let F be a field, F [x]. If a ∈ F , then

f(x) = anx
n + ...+ a1x+ a0 ∈ F

Then the function F [x]
ϕa−→ F, f(x) 7→ f(a), and

ϕa(f(x)g(x)) = f(a)g(a) ϕa(f(x) + g(x)) = ϕa(f(x)) + ϕa(g(x)) = f(a) + g(a)

Example. Let F = Z5, f(x) = x5 − x, g(x) = x5 + 1. f(x) has 5 zeros, {0, 1, 2, 3, 4} and g(x)
has 1 zero {4}.

5.2 Unique Factorization of Polynomials

Example. Let F = Z5. Divide 3x4 + 2x3 + x + 2 by x2 + 4: 3x4 + 2x3 + x + 2 =
(x2 + 4)(3x2 + 2x+ 3) + 3x

Division Algorithm. Let F be a field, and f(x), g(x) ∈ F [x] such that g(x) ̸= 0. Then there
are unique polynomials q(x), r(x) such that

f(x) = g(x)q(x) + r(x), deg(r(x)) < deg(g(x))

Proof. Let f(x) = anx
n + ... + a1x + a0, g(x) = bmx

m + ... + b1x + b0, and S = {f(x) −
g(x)h(x)

∣∣ h ∈ F [x]}

If the polynomial is in Sr then we are then, and f(x) = g(x)h(x). Otherwise, let r(x) be the
polynomial with smallest degree in S, where ctx

t + ...+ c1x+ c0, so f(x) = g(x)h(x) + r(x) for
some h(x).

Then, to show t < m or deg(r(x)) <deg(g(x)), I suppose otherwise that t ≥ m. Then f(x) −
g(x)(h(x) + ct

bm
xt−m) ∈ S.

f(x)− g(x)

(
h(x)− ct

bm
xt−m

)
= r(x)− ct

bm
g(x)xt−m

Here, ct
bm
g(x)xt−m = ctx

t+ lower terms ■
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Corollary. a ∈ F is a zero of f(x) ⇐⇒ f(x) = (x− a)g(x) for some g(x) ∈ F [x]

Proof. ⇐=. Plug in a. f(a) = 0.

=⇒ : By division algorithm, f(x) = (x − a)q(x) + r(x), where r(x) = 0 or degr(x) < 1, so
r(x) = c is a constant. Evaluate at a: f(a) = (a− a)g(a) + c =⇒ c = 0 ■

Corollary. Every non-zero polynomial of degree n has at most n zeros in F .

Proof. Prove by induction on n. If n = 0, f(x) = c, c ̸= 0, so there is no zero.

For n− 1 =⇒ n, if f(x) has no zeros, then we are done.

Otherwise, let a be a zero of f(x), so f(x) = (x − a)g(x), deg g(x) = n − 1. If b is a zero of
g(x), then 0 = f(b) = (b − a)g(b). Since F is a field b − a = 0 or g(b) = 0. But, g(x) has at
most n− 1 zeros, so f(x) has at most n zeros. ■

Definition. A non-constant polynomial f(x) ∈ F [x] is called reducible if it could be written
as f(x) = g(x)h(x), where g(x), h(x) ∈ F [x], deg(g(x)), deg(h(x)) < deg(f(x)).

f(x) is irreducible if it is not reducible.

Example. x2 − 2 ∈ Q[x] is irreducible, but it is reducible in R[x].

Proposition. Let f(x) ∈ F [x].

• If deg(f(x)) = 1, then f(x) is irreducible.

• If deg(f(x)) = 2, then f(x) is reducible ⇐⇒ f(x) has zero in F .

• If deg(f(x)) = 3, then f(x) is reducible ⇐⇒ f(x) has zero in F .

Proof. For degree 2 ⇐=: Clear: If a ∈ F has a zero, f(x) = (x− a)g(x).

=⇒ : If f(x) reducible, then f(x) = g(x)h(x), where g(x), h(x) ∈ F [x],deg(g(x)) = deg(h(x)) =
1. Write g(x) = b0x+ b1, b0 ̸= 0. Then, − b1

b0
is a zero of g and therefore also a zero of f .

Note: Key to this proposition is that any linear equation has a zero solution, but everything
beyond is a mystery. ■

Example. f(x) = (x2 + 2)2 ∈ R[x] reducible but has no zeros.

Example. x2 − 2, x3 − 2 reducible in Q[x] but has no solutions in Q.

Proposition. If f(x) ∈ Z[x], then f(x) is reducible in Q[x] ⇐⇒ f(x) = g(x)h(x), where
g(x), h(x) ∈ Z[x], deg(g(x)), deg(h(x)) < deg(f(x)).

Proof. See book.

Corollary. If f(x) = xn+ ...+a1x+a0 ∈ Z[x]. Then every rational zero of f(x) is an integer
which divides a0.
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Proof. If p
q is a zero of f(x), then gcd(p, q) = 1

f

(
p

q

)
=
pn

qn
+ an−1

pn−1

qn−1
+ ...+ a1

p

q
+ a0 =

pn + an−1p
n−1q + ...+ a1pq

n−1 + a0q
n

qn
= 0

■

Notice that q divides the numerator, so since q divides an−1p
n−1q + ... + a1pq

n−1 + a0q
n, it

must be that q
∣∣ pn. Since they are relatively prime, q = ±1 so p

q = c ∈ Z. Also, using similar

logic, p divides a0q
n = ±a0, so p

∣∣ a0.
Example. Is x5 + 8x+ 2 ∈ Q[x] irreducible? For f(x) = x5 + 8x+ 2, the possible zeros
are ±1,±2. None of the above is a zero f(x), so f(x) irreducible in Q[x].

[Eisenstein Criterion]. If f(x) = anx
n + ...+ a1x+ a0 ∈ Z[x] and if there is a prime p such

that p divides a0, ..., an−1 AND p does not divide an, then f(x) irreducible in Q[x].

Example. f(x) = x4 + 8x+ 2. Let p = 2. By eisenstein, f(x) is irreducible.

Proof. Suppose f(x) = g(x)h(x), and let deg(g(x)), deg(h(x)) < deg(f(x)). Let

g(x) = bmx
m + ...+ b1x+ b0 h(x) = clx

l + ...+ c1x+ c0, m+ l = n

Then, a0 = b0c0, an = bmcl. If p
∣∣ a0 = b0c0 and p2 does not divide a0, then p divides exactly

one of b0, c0.

WLOG, assume p
∣∣ b0 and does not divide c0. But if p ∤ an, then p ∤ bm. Let i be the smallest

integer such that p ∤ bi, so p
∣∣ b0, ..., bi−1, i ≤ m < n. Now, ai = bic0 + bi−1c1 + ...+ b1ci−1ci, so

p
∣∣ bic0 but p ∤ bi, c0 which is a contradiction. So p ∤ an. ■

Definition. Polynomial factorization: If F is a field and f(x) ∈ F [x], then we factor f(x)
as f(x) = f1(x) . . . fl(x) ∈ F [x] and irreducible. This factorization is unique up to reordering
and nonzero constants.

5.3 Ideals

If (R,+, ·) is a ring and S ⊂ R is a non-empty subset, then S is a subring if

• S closed under multiplication

• (S,+) ≤ (R,+)

Example. (Z,+, ·) is a subring of (R,+, ·)

Example. A = {f(x) ∈ R[x]
∣∣ f(0) = 0}

When is R/S a ring with (a+S)+(b+S) = (a+b)+S and (a+S)(b+S) = ab ∈ S well-defined?

Definition. A subset I ⊆ R is an ideal if

• (I,+) ≤ (R,+)

• If r ∈ R and a ∈ I, then ra, ar ∈ I.
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Fact: Every ideal is a subring (Ideal is a stronger condition)

Example. Z is not an ideal of R : 2 ∈ Z,
√
3 ∈ R, 2

√
3 /∈ Z

Theorem. If I is an ideal in R, then multiplication is well-defined on R/I, so R/I is a ring.

Proof. Suppose a + I = a′ + I and b + I = b′ + I, then a − a′, b − b′ ∈ I. ab − a′b′ =
a(b− b′) + b′(a− a′) ∈ I =⇒ ab− a′b′ ∈ I =⇒ ab+ I = a′b′ + I ■

Example. What are ideals of Z? If I is an ideal, then it is a subgroup, so it is of the form
I = nZ. Every such subgroup is an ideal.

Example. What are ideals of R? 0 is always an ideal. R is also an ideal.

Proof. If a ̸= 0 and a ∈ I, then ∀r ∈ R, ra · a ∈ I, so r ∈ I. ■

Example. What are the ideals of R[x]?

Proof. If I ⊆ R[x] is an ideal and I ̸= {0}, let f(x) ∈ I be polynomial of smallest degree.

If g(x) ∈ I, divide g(x) by f(x), where g(x) = f(x)g(x) + r(x), r(x) = 0 or deg(r(x)) =
deg(f(x)).

Since g(x), f(x)g(x) ∈ I, r(x) = g(x) − f(x)g(x) ∈ I. So by the choice of f(x), r(x) = 0 =⇒
g(x) = g(x)f(x). I = {f(x)g(x)

∣∣ g(x) ∈ R[x]}. ■

Remark: The same argument holds for all F [x].

Definition. If R is a commutative ring and a ∈ R, then I = {ar
∣∣ r ∈ R} is an ideal of R. In

particular, I is the principle ideal generated by a, denoted as I = (a).

Example. In Z[x], I = {f(x)
∣∣ f(0) even} is an ideal. 2, x ∈ I, so I is not a principle ideal.

Proposition. If ϕ : R → S is a ring homomorphism, then kerϕ := {a ∈ R
∣∣ ϕ(a) = 0} is an

ideal of R.

Proof. We already know that (ker(ϕ),+) ≤ (R,+). Now if r ∈ R, a ∈ kerϕ, then ϕ(ra) =
ϕ(r)ϕ(a) = 0 and ϕ(ar) = ϕ(a)ϕ(r) = 0 =⇒ ar, ra ∈ kerϕ. ■

Corollary. If R is a field, then kerϕ = {0} or kerϕ = R. So ϕ is 1-to-1 or ϕ is the 0.

Definition. An ideal I ⊆ R is a maximal ideal if I ̸= R and there is no proper ideal J s.t.
I ⊈ J . In other words, if I ⊆ J ⊆ R, then J = R or J = I.

Example. [Maximial Ideas of Z] Let I = nZ and n,m > 0. nZ ⊆ mZ ⇐⇒ n ∈ mZ ⇐⇒
m

∣∣ n. So, nZ = mZ for n,m ≥ 1 ⇐⇒ n
∣∣m and m

∣∣ n ⇐⇒ m = n. So nZ is a maximal ideal
⇐⇒ n is prime.

Proposition. Suppose F is a field and f(x) ∈ F [x]. Then I is a maximal ideal ⇐⇒ f(x) is
irreducible.
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Proof. =⇒ . Suppose f(x) = g(x)h(x), 0 < degg(x), h(x) < degf(x). Let I = (f(x)) =
{f(x)q(x)

∣∣ q(x) ∈ F [x]}. We claim that I = (f(x)) ⫋ (g(x)) since every polynomial in I has
degree ≥ deg f(x), so g(x) /∈ I. Also (g(x)) ̸= F [x], since 1 /∈ (g(x)).

⇐= . Prove by contrapositive. If I ⫋ J ̸= F [x], then J = (g(x)). So f(x) ∈ (g(x)) =⇒ f(x) =
g(x)h(x) for some h(x).

• If deg g(x) = 0, then g(x) = c ∈ F =⇒ 1
c · c ∈ J =⇒ 1 ∈ J =⇒ h(x) = 1 ∈ J =⇒

J = F [x].

• If deg h(x) = 0, then h(x) = c ̸= 0 ∈ F , so g(x) = 1
cf(x) ∈ (f(x)) =⇒ (g(x)) ⊆

(f(x)) =⇒ J = I.

So 0 < deg g(x), h(x) < deg f(x), so f(x) reducible. ■

Example. If F is a field, what are maximal ideals of F [x]?.

I = (x2 + 1) ⊂ R[x] is a maximal ideal.
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