
MATH493 Probability

Albert Peng

December 18, 2022

1



Contents

1 Basic Probability Foundations 3

2 Conditional Probability and Independence 3
2.1 Bayes Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Random Variable 4
3.1 Probabilities of Limiting Sets . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.2 Expected Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.3 Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.4 Common Sense Random Variables . . . . . . . . . . . . . . . . . . . . . . . 5
3.5 Non-trivial things . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.6 Middle School Level distributions: geometric . . . . . . . . . . . . . . . . . 6

3.6.1 Waiting Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.6.2 Hypergeometric Distribution . . . . . . . . . . . . . . . . . . . . . . 7
3.6.3 Poisson Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4 Continuous Random Variables 8
4.1 Expectation and Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.2 Uniform Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.3 Exponential Random Variables . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.4 Poisson Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4.4.1 Gamma Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.5 Normal Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.6 Transformation of Continuous Random Variables . . . . . . . . . . . . . . . 11

5 Jointly Distributed Random Variables 12
5.1 Joint CDFs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.2 Independence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.3 Conditional PMF and PDF . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.4 Transformation of Bivariate Random Variables . . . . . . . . . . . . . . . . 13
5.5 Beta Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.6 Bivariate Normal Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.7 T Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.8 F Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

6 Properties of Expectation 16
6.1 Conditional Mean and Variance . . . . . . . . . . . . . . . . . . . . . . . . . 17
6.2 Moment Generating Functions . . . . . . . . . . . . . . . . . . . . . . . . . 18

7 Limit Theorems 19

2



1 Basic Probability Foundations

We define the sample space Ω as all possible events. Events E are thus just subsets of
Ω (E ⊆ Ω). It is also the case that ∅ = Ωc.

Mutually disjoint sets A1, A2, ... are sets where Ai ∩Aj = ∅, ∀i ̸= j.

Theorem. De Morgan’s Laws state that

(A ∪B)c = Ac ∩Bc (A ∩B)c = Ac ∪Bc

The axiomatic definition of probability states that the probability must satisfy

1. P (E) ≥ 0

2. P (Ω) = 1

3. For mutually exclusive events E1, ..., Ei,

P

( ∞⋃
i=1

Ei

)
=

∞∑
i=1

P (Ei)

2 Conditional Probability and Independence

Definition. For events A and B with P (B) > 0:

P (A |B) =
P (A ∩B)

P (B)
(1)

P (B) = P (B ∩A) ∪ P (B ∩AC) = P (A)P (B|A) + P (Ac)P (B|Ac)

2.1 Bayes Theorem

The Bayes Theorem is important in allowing us to compute unknown probability given
known info.

P (E1 |E2) =
P (E1)P (E2 |E1)

P (E2)
=

P (E1)P (E2 |E1)

P (E1)P (E2 |E1) + P (Ec1)P (E2 |Ec1)
(2)

Definition. A being independent of B means that knowing B has occurred does not
change P (A). This implies that P (A) = P (A |B), which means

P (A ∩B) = P (A)P (B)

Corollary. A,B independent ⇐⇒ A,Bc independent ⇐⇒ Ac, B independent ⇐⇒ Ac, Bc

independent.

Note that this is very different from disjoint events. Disjoint sets are never independent
unless one or both has probability 0.
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3 Random Variable

Mathematically, a random variable is a function from Ω to real numbers.

We denote the set of possible values (or state space) of X by X , where

X = {X(ω) : X ∈ Ω}

The function pX(x) = P (X = x), x ∈ R. is called the probability mass function
(PMF). The PMF of a discrete random variables satisfy the properties that

pX(x) ≥ 0 for all x and
∑
x∈X

pX(x) = 1

We can also describe probability as its cumulative distribution function (CDF),
where

FX(x) = F (x) = P (X ≤ x), −∞ < x <∞

3.1 Probabilities of Limiting Sets

Supposes that events B1, ..., are increasing such that

B1 ⊂ B2 ⊂ . . . , B = B1 ∪B2 ∪ . . .

Then we can write Bn ↑ B and

P (B) = P (∪∞
n=1Bn) = lim

n→∞
P (Bn)

3.2 Expected Values

Suppose X is discrete with PMF pX(x) for x ∈ X , then

E(X) =
∑
x∈X

xpX(x), if
∑
x∈X

|x| pX(x) <∞

Pull-back trick is where we assume that Ω is a countable space and expectation exists.
Then

µ = E(X) =
∑
x∈X

xpX(x) =
∑
ω∈Ω

X(ω)P (ω)

Now, let X = {x1, x2, ...}. Then Ei = {ω : X(ω) = xi, }, i = 1, 2, ... partitions ω. In other
words, Ei ∩ Ej = ∅, E1 ∪ E2 ∪ ...

E(X1+X2) =
∑
ω∈Ω

(X1+X2)(ω)P (ω) =
∑
w∈Ω

{X1ω+X2ωP}P (ω) =
∑
ω∈Ω

X1(ω)P (ω)+
∑
ω∈Ω

X2(ω)P (ω)

Also let g be a function and g(X) is a discrete random variable. Then

E(g(x)) =
∑
x∈X

g(x)pX(x), if
∑
x∈X

|g(x)| pX(x) <∞

Common properties include
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1. E(aX) = a(E(X)), ∃ a ∈ R
2. E(c) = c,∃ c ∈ R

3.3 Variance

V ar(X) = σ2X = E[(X − µ)2] = E(X2)− E(X)2

Common properties include: (proofs trivial)

1. V ar(X) ≥ 0 (E(X2) ≥ µ2)

2. V ar(X) = 0 =⇒ P (X = µ) = 1

3. V ar(aX + b) = a2V ar(X), ∃ a, b ∈ R
4. V ar(X1 +X2) = V ar(X1) + V ar(X2) does not apply in most situations.

When expanded, we have

V ar(X1 +X2) = V ar(X1) + V ar(X2)− 2E[(X1 − µ1)(X2 − µ2)]

The last term is defined to be the covariance, where

Cov(X1, X2) = E[(X1 − µ1)(X2 − µ2)]

3.4 Common Sense Random Variables

For Bernoulli situations, we have E(x) = p and V ar(X) = p(1− p)

Binomial random variables is when n Bernoulli random variables are repeated, with

Yn ∼ Bin (n, p) P (Y = y) =

(
n

y

)
py(1− p)n−y

E(Y ) = np V ar(Y ) = np(1− p)

3.5 Non-trivial things

E(I1) =

∞∑
k=1

k(1− p)k−1p =
1

p

d

dx

∞∑
n=0

xn =
d

dx

1

1− x
=

1

(1− x)2
=

∞∑
n=0

n · xn−1

∞∑
n=0

n · xn−1(1− x) =
1

1− x

Let x = 1− p, then
∞∑
n=0

n · (1− p)k−1p =
1

p
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To compute E(I2), we differentiate twice and get

∞∑
n=2

n(n− 1)xn−1(1− x) =
2

(1− x)2

With n− 1 = k,
∞∑
n=1

(k + 1)kxk−1(1− x) =
2

(1− x)2

...

3.6 Middle School Level distributions: geometric

Geometric distribution has “lack of memory” property, where

P (I > k + n | I > n) = P (I > k)

Proof. Trivial To prove again:

P (I1 = k1 and I2 = k2)

...

P (I2 = k2) =

∞∑
k1=1

P (I1 = k1 and I2 = k2) =

∞∑
k1=1

(1−p)k1−1·p·(1−p)k2−1·p = ... = (1−p)k2−1·p·1.

3.6.1 Waiting Times

The pmf of Wr is
P (wr = n) = P (rth success in n toss)

Thus,

P (Wr = n) = P (Yn−1 = r − 1, Xn = 1) =

(
n− 1

r − 1

)
pr−1(1− p)n−1−(r−1) · p

=

(
n− 1

r − 1

)
pr(1− p)n−r, n = r, r + 1...

Wr is known as negative binomial random variable with r and p such that Wr ∼
NB(r, p). It follows that

∞∑
n=r

(
n− 1

r − 1

)
pr(1− p)n−r = 1

For expected values we know that Wr =
∑r

i=1 Ir so

E(Wr) =

r∑
i=1

Ii =
1

p
+ ...+

1

p
=
r

p
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V ar(Wr) > V ar(I1) + ...+ V ar(I2) =
r(1− p)

p2

An important property is that

[Wr > n] ≡ [Yn < r] =⇒
∞∑

k=n+1

(
k − 1

r − 1

)
pr(1− p)k−r =

r−1∑
k=0

(
n

k

)
pk(1− p)n−k

We can reach maximum peaks by comparing successive negative binomial probabilities:

R(y) =
pw(y)

pw(y − 1)
=

(
r − 1

)
3.6.2 Hypergeometric Distribution

Given that there are n successes among N trials, what is the probabillity that there are x
successes among the first m trials? Here x is nonnegative integer and m < N .

P (Ym = x | YN = n) =

(
m
n

)
·
(
N−m
n−x

)(
N
n

) , x = max(0, n+m−N), ...,min(n,m)

E(H) =
mn

N
V ar(H) =

mn(N −m)

N2
· N − n

N − 1

Look at slides for a bit more detail

If N → ∞, n
M → p and H becomes Bin(m, p)

3.6.3 Poisson Distribution

P(Y = y) = e−λ
λy

y!
, µ = E(X) = λ, V ar(Y ) = λ

Proving E(λ) simply requires difference of infinite geometric sum.

E(Y ) =
∞∑
y=0

y P(y)

=
∞∑
y=0

ye
−λλy

y!
= e−λ

∞∑
λ=1

λy

(y − 1)!
= λe−λeλ = λ

Law of Small Numbers: With large n, small p and λ = np, then(
n

y

)
py(1− p)n−y ≈ e−λ

λy

y!

Proof. Begin with the normal formula for binomial distribution. Substituting p = λ
n and

considering the convergence of n and p,

n!

y!(n− y)!
· λ

y

ny
·
(
1− λ

n

)n−y
=

1

y!
· λy

(
1− λ

n

)n(
1− λ

n

)−y
=
λye−λ

y!
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La Cam’s theory...

4 Continuous Random Variables

Definition. A continuous random variable X takes a continuous range of values as
opposed to a discrete random variable for which the set of possible values is at most count-
able. Typically, a continuous random variable variable X is described by a probability
density function (PDF) fX(x), so that a probability within the interval [a, b] is given by

pX(x) =

∫ b

a
fX(x) dx

We also have FX(x) = P (X ≤ x), where X is continuous iff FX(x) is continuous. Assume
that FX(x) is differentiable and fX(x) = F ′

X(x).

A density fX also satisfies

fX(x) ≥ 0 and

∫ ∞

−∞
fX(x) dx = 1

Note that fX(x) is not a probability, so we can have fX(x) > 1.

For any continuous random variables X, then for any number c, P (X = c) = 0.

4.1 Expectation and Variance

Suppose X is a continuous random variable with PDF f(x). Then

µ = E(g(x)) =
∫ ∞

−∞
g(x)f(x) dx, provided

∫ ∞

−∞
|g(x)|f(x) dx <∞ (3)

σ2 = V ar(X) = E[(X − µ)2] =

∫ ∞

−∞
(x− µ)2f(x) dx = E(X2)− µ2 (4)

4.2 Uniform Distribution

In uniform distribution, X takes values in an interval [a, b] :

f(x) =
1

(b− a)
, a ≤ x ≤ b

E(X) =
(a+ b)

2
, V ar(X) =

(b− a)2

12
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4.3 Exponential Random Variables

Exponential Random Variables is useful to describe time for an event to ccur or life-time
of a component, where

X ∼ exp(λ), fX(x) = λeλx, x ≥ 0

E(X) =
1

λ
, V ar(X) =

1

λ2

This also has the memoryless property.

FX(x) =

{
1− e−λx, x > 0

0, otherwise

4.4 Poisson Process

Let T1, ..., Tn be times when an event occurs. We use N(t) to dente the number of events
up to and including time t. Also let N(J) be the number of events in the time interval J .

Then, N(t) where t ≥ 0 is a Poisson process with rate λ iff

1. Outcomes in disjoint intervals are independent. Formally, J1 and J2 are independent.

2. N(t) ∼ Pois(λt) for all t ≥ 0. In other words, N(J) ∼ Pois(λ|J |)

We can conclude that

P (T1 > t) = P (N(t) = 0) = e−λt =⇒ T1 ∼ eλ

Now, let I1 = T1, I2 = T2 − T1, I3 = T3 − T2, ...Ik = Tk − Tk−1 and {X(m)
n } be outcomes of

coin tossing experiments where success probability = pm and n = 1
m ,

2
m , .... Thus, Number

of successes up to time t is essentially number of successes in mt tosses. As m approaches
infinity, we have mpm approach λ.

The probability of no heads up to time t is

(1− pm)mt = (1− λm
m

)mt → e−λt

Now, we have

P (Tk > t) ≡ P (N(t) < k) ≡ P (Pois(λt) < k) =
k−1∑
i=1

e−λt(λt)i

i!

Therefore if Fk is CDF of Tk,

Tk > t ≡ N(t) < k,N(t) ∼ Pois(λt) =⇒ 1−Fk(t) = P (Tk > t) = P (Pois(λt) < k) =

k−1∑
i=1

e−λt(λt)i

i!

Differentiating both sides and taking derivative, we have the PDF where

fk(t) = λ
e−λt(λt)k−1

(k − 1)!

Here, fk is known as gamma density with parameters k and λ, where

Tk ∼ gamma(k, λ)
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4.4.1 Gamma Variables

Continued from previous as continuation of exponential random variables. We define

Γ(r) =

∫ ∞

0
e−xxr−1 dx, r > 0

We have X ∼ gamma(r, λ) where PDF is

fX(x) =
1

Γ(r)
λrxr−1e−λ

since Γ(r) = (r−1)! for integer values of r. This is due to the fact that Γ(r) = (r−1)Γ(r−1).

The CDF FX(x) is not known analytically unless r is a positive integer.

E(X) =
Γ(r + 1)

Γ(r)λ
=
r

λ
, V ar(X) =

r

λ2

E(X) =

∫ ∞

0
xfX(x) dx =

∫ ∞

0

1

Γ(r)
λrxr−1e−λx

=
1

Γ(r)

∫ ∞

0
λrxre−λx

=
Γ(r + 1)

λΓ(r)

∫ ∞

0

λr+1

Γ(r + 1)
xre−λx

=
Γ(r + 1)

λΓ(r)
=
rΓ(r)

λΓ(r)
=
r

λ

For the variance,

E(X2) =

∫ ∞

0
x2fX(x) dx =

∫ ∞

0

1

Γ(r)
λrxr+1e−λx

=
1

Γ(r)

∫ ∞

0
λrxr+1e−λx

=
Γ(r + 1)

λΓ(r)

∫ ∞

0

λr+1

Γ(r + 1)
xre−λx

=
Γ(r + 2)

λ2Γ(r)
=

(r + 1)Γ(r + 1)

λ2Γ(r)
=
r(r + 1)

λ2

V ar(X) = E(X2)− (E(X))2 =
r(r + 1)

λ2
−
( r
λ

)2
=

r

λ2

4.5 Normal Distribution

Normal distribution X has the density function

f(x) =
1√
2πσ

e−
1

2σ2 (x−µ)2 , −∞ < x <∞,−∞ < µ <∞, σ > 0 (5)
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The standard normal density with µ = 0, σ = 1 is written as Φ(X) where

Φ(x) =

∫ x

−∞

1√
2π
e−

1
2
x2

Note the 68-95-99.7% rule.

Normal distribution is often used to approximate a lot of distributions such as binomial,
poisson, and gamma.

For X ∼ Bin(n, p), n large and p not close to 0 or 1. then

X ≈ N(np, np(1− p))

For X ∼ pois(λ) and λ large, then

X ≈ N(λ, λ)

For X ∼ gamma(r, λ) and r large, then

N ≈ N
( r
λ
,
r

λ2

)
When we are approximating binomial distribution X with normal distribution Y , we
should use

P (X ≤ x) ≈ P (Y ≤ x+ 0.5)

because of the discontinuity of binomial distribution.

4.6 Transformation of Continuous Random Variables

Suppose we have distribution X and Y such that Y = aX + b, where a > 0.

FY (y) = P (Y ≤ y) = P (aX + b ≤ y)

= P (aX ≤ y − b) = P

(
X ≤ y − b

a

)
= FX

(
y − b

a

)

fY (y) = F ′
Y (y) = fX

(
y − b

a

)
d

dy

y − b

a
= fX

(
y − b

a

)
· 1
a

This could be generalized as Y = φ(X) where φ is a monotone differentiable function.
Thus,

FY (y) = P (φ(X) ≤ y) = P (X < φ−1(y)) = 1−FX(φ−1(y)), fY (y) = fX(φ
−1(y))

∣∣∣∣ ddyφ−1(y)

∣∣∣∣
Example. Suppose Y = eX = φ(X) and X ∼ N(µ, σ2).

X = lnY = φ−1(Y ) =⇒ d

dy
φ−1(Y ) =

1

y
=⇒ fY (y) = fX(φ

−1(Y ))
d

dy
φ−1(Y ) =

1√
2πσ

e−
1

2σ2 (log y−µ)2
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Y is known here as the log normal random variable.

With uniform random variable Y ∼ unif(0, 1),

P (Y ≤ y) = P (FX(x) ≤ y) = P (X ≤ F−1
X (y)) = FX(F

−1
X (x)) = y, 0 < y < 1

Example. X ∼ N(0, 1). Find PDF of Y = X2.

fX(x) = ϕ(X) =⇒ FY (y) = P (Y ≤ y) = P (X2 ≤ y) = P (−√
y ≤ X ≤ √

y) = Φ(
√
y)−Φ(−√

y)

PDF of Y is

fY (y) =
d

dy
(2Φ(X)− 1) = 2Φ(

√
y) · 1

2
√
y
, y > 0 =

1√
2π
e−

y
2 y−

1
2

This is Y ∼ gamma(12 ,
1
2), and is also known as χ2

1 distribution (chi-square random variable
with degrees of freedom = 1)

5 Jointly Distributed Random Variables

X,Y are jointly continuous with density fX,Y if for any a ≤ b and c ≤ d,

P (a ≤ X ≤ b, c ≤ Y ≤ d) =

∫ ∫
[a,b]×[c,d]

fX,Y (x, y) dx dy

Conceptually, the double integral is the volume under the surface given by {(x, y, z) : z =
fX,Y (x, y)} over a region covered by [a, b]× [c, d].

We can get marginal densities from

fX(x) =

∫ ∞

−∞
fX,Y (x, y) dy fY (x, y) =

∫ ∞

−∞
fX,Y (x, y) dx

Exercise: Prove this (not fully trivial); see slides

Look at example from slides. (example 3 expansion below)

P(...) = e−λx·λδxe
−λδx

1
·e−λ(y−x−δx)·λδye

−λδy

1
= λ2e−λyδxδye

−λδy ≈ λ2e−λyδxδy+ smaller terms

Calculating marginal densiities for example 3,

fy(y) =

∫ y

0
λ2e−λy dx =

[
λ2e−λyx

]y
0
= λ2ye−λy, y > 0 =⇒ 1

Γ(2)
λ2y2e−λy, y > 0

fX(x) =

∫ ∞

x
λ2e−λy dx = λe−λx,, x > 0

12



5.1 Joint CDFs

We define the joint CDF of the continuous bivariate random variable as

FX,Y (x, y) = P (X ≤ x, Y ≤ y) =

∫ x

−∞

∫ y

−∞
fX,Y (u, v) du dv

Maybe add in parts from slides.

5.2 Independence

Two random variables X,Y are independent iff for every A and B the events [X ∈ A] and
[Y ∈ B] are independent, then P (X ∈ A, Y ∈ B) = P (X ∈ A) · P (Y ∈ B). Equivalently,
two events are independent iff ∀x, y,

FX,Y (x, y) = FX(x)FY (y) fX,Y (x, y) = fX(x)fY (y)

5.3 Conditional PMF and PDF

fX|Y (x | y) =
fX,Y (y)

fY (y)
fY |X(y | x) =

fX,Y (x, y)

fX(x)

5.4 Transformation of Bivariate Random Variables

Assume we have random variables (X,Y ) with joint PDF fX,Y (x, y). Let U = g1(X,Y )
and V = g2(X,Y ). Let g(g1, g2) be injective and surjective so that we can solve X =
ψ1(U, V ), Y = ψ2(U, V ). Then,

fU,V (u, v) = fX,Y (ψ1(U, V ), ψ2(U, V ))× |Jacobian Determinant|, where J =

∣∣∣∣∂ψ1

∂U
∂ψ1

∂V
∂ψ2

∂U
∂ψ2

∂V

∣∣∣∣
Example. X ∼ N(0, 1) and Y ∼ N(0, 1) and X and Y are independent. Now, we have
U = X + Y and V = X − Y .

First, we get X = U+V
2 and Y = U−V

2 . The Jacobian determinant = −1
2 . We also know

that fX,Y (x, y) = fX(x) · fY (y) = 1√
2π
e−

x2

2 · 1√
2π
e−

y2

2 . Thus,

fU,V (u, v) = fX,Y

(
U + V

2
,
U − V

2

)
·1
2
=

1

4π
e−

u2+v2

4 =
1√
4π
e−

u2

4 · 1√
4π
e−

v2

4 =⇒ U, V ∼ N(0, 2)

Example. X,Y ∼ exp(1) and independent. U = X + y, V = X − Y .

fU,V (u, v) = fX,Y

(
U + V

2
,
U − V

2

)
· 1
2{

0 < x <∞
0 < y <∞

=⇒

{
0 < U+V

2 <∞
0 < U−V

2 <∞
=⇒

{
−v < u <∞
v < u <∞

=⇒ 0 < |v| < u <∞

13



fU,V (u, v) = fX,Y

(
u+ v

2
,
u− v

2

)
1

2
= e−

U+V
2 · e−

U−V
2 · 1

2
=

1

2
e−u, 0 < |v| < u <∞

fU (u) =

∫ u

−u

1

2
e−u dv = ue−u, 0 < u <∞ =⇒ u ∼ gamma(2, 1)

fV (v) =

∫ ∞

|V |

1

2
e−u du =

1

2
e−|V |,−∞ < v <∞

Here, V is known as a double exponential random variable.

Example. X ∼ gamma(r, λ), y ∼ gamma(s, λ). X,Y independent. U = X + Y, V =
X

X+Y .

Since T1 | T2 = t ∼ unif(0, 1) =⇒ T1
T2

| T2 = t ∼ unif(0, 1).

X = UV, Y = U −X = U(1− V ), 0 < u <∞, 0 < v < 1 =⇒ J =

∣∣∣∣ V U
1− V −U

∣∣∣∣ = −U

fX,Y (x, y) = fX(x)·fY (y) =
1

Γ(r)
λrxr−1e−λx· 1

Γ(s)
λsys−1e−λy =

1

Γ(r)Γ(s)
λr+sxr−1ys−1e−λ(x+y)

fU,V (u, v) = fX,Y (uv, u(1− v)) · u =
1

Γ(r)Γ(s)
λr+sur+s−1e−λuvr−1(1− v)s−1

=
1

Γ(r + s)
ur+s−1λr+se−λu · Γ(r + s)

Γ(r)Γ(s)
· vr−1(1− r)s−1

Thus, U, V independent with U ∼ gamma(r + s, λ) and V ∼ beta(r, s).

5.5 Beta Distribution

U ∼ beta(α, β) if

fU (u) =
1

B(α, β)
uα−1(1− u)β−1, where B(α, β) =

Γ(α)Γ(β)

Γ(α+ β)
and 0 < u < 1

E(U) =
α

α+ β
, V ar(U) =

αβ

(α+ β)2(α+ β + 1)

E(v) =

∫ 1

0
v

1

B(α, β)
vα−1(1−α)β−1 =

1

B(α, β)

∫ 1

0
vβ+1−1(1−v)α−1 du =

B(r + 1, s)

B(r, s)
=

r

r + s

Note that beta(1, 1) ≡ unif(0, 1)

Sum of independent χ2
1 random variables

Suppose Z1, ... are i.i.d. N(0, 1) random variables. The distribution of Z2
1+ ...+Z

2
n. Recall

that Z2
1 ∼ χ2

1 ≡ gamma(12 ,
1
2) =⇒ Z2

1 + Z2
2 ∼ gamma(12 + 1

2 ,
1
2) =⇒ Z2

1 + ... + Z2
n ∼

gamma(n2 ,
1
2) ≡ χ2

n

14



5.6 Bivariate Normal Distribution

(X,Y ) ∼ fX,Y (x, y). Suppose fX(x) ≡ N(µ1, σ
2
1), fY (y) ≡ N(µ2, σ

2
2), we have joint

probability

fX,Y (x, y) =
1

2πσ1σ2
√

1− ρ2
exp

[
− 1

2(1− ρ2)

((
x− µ1
σ1

)2

+

(
y − µ2
σ2

)
− 2ρ

(
x− µ1
σ1

)(
y − µ2
σ2

))]

With this bivariate normal distributions, we have properties

X ∼ N(µ1, σ
2
1), X ∼ Y (µ2, σ

2
2)

fX|Y (x|y) ∼ N

(
µ1 + ρ

σ1
σ2

(y − µ2), σ
2
1(1− ρ2)

)
, fY |X(y|x) ∼ N

(
µ2 + ρ

σ2
σ1

(y − µ1), σ
2
2(1− ρ2)

)
,

aX + bY ∼ N
(
aµ1 + bµ2, a

2σ21 + 2abρσ1σ2 + b2σ22
)

If ρ = 0, then X and Y are independent.

5.7 T Distribution

Suppose that Z ∼ N(0, 1), W follows χ2
n and Z and W are independent. Define

T =
Z√
W
n

Then,T follows t dis tribution with n degrees of freedom with density

fT (t) =
Γ(n+1

2 )
√
nπΓ(n2 )

(
1 +

t2

n

)−n+1
2

Proof. Let T = Z/
√

W
n , V =W =⇒ Z = T

√
V
n . The jacobian matrix is

det

[
V
n ∗
0 1

]
=⇒

√
V

n

f(z, w) = fZ(z)fW (w) =
1√
2π
e−z

2/2 1

Γ(n2 )

1

2

n
2

w
n
2
−1e−

w
2

fT,V (t, v) = fZ,W

(
t

√
V

n
, V

)√
V

n
=⇒ f(t, v) =

1√
πnΓ(n2 )

(
1

2

)n+1
2

V
n+1
2

+1e−
V
2
(1+ t2

n
)

Thus, find fT (t) after transformation yields

f(t) =
Γ(n+1

2 )
√
πnΓ(n2 )

(
1 +

t2

n

)−n+1
2
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5.8 F Distribution

Suppose that W follows χ2
m, V ∼ χ2

n independent. Define

F = (W/m)/(V/n)

6 Properties of Expectation

fX+Y (z) =

∫ ∞

−∞
fX(z − y)fY (y)dy

X1, ..., Xn are jointly continuous with density f and Y = g(X1, ..., Xn). Then

E(Y ) =

∫ ∞

−∞
yfY (y) =

∫ ∞

−∞
...

∫ ∞

−∞
g(x1, ..., xn)f(x1, ..., xn)dx1...dxn

Define covariance between X and Y as

Cov(X,Y ) = E [(X − µX)(Y − µY )] = E(XY )− E(X)E(Y )

Since [(X−µx)(Y −µY )] ≤ 1
2 [(X−µX)2(Y −µY )2] =⇒ 2Cov(X,Y ) ≤ V ar(X)+V ar(Y ).

Properties:

• Cov(X,Y ) = V ar(X)

• Cov(aX, Y ) = aCov(X,Y )

• CoV (X + Y, Z) = Cov(X,Z) + Cov(Y, Z)

In general,

V ar

(
n∑
i=1

Xi

)
=

n∑
i=1

V ar(Xi) + 2
∑∑

i<j

Cov(Xi, Xj)

We define correlation between X and Y as

ρX,Y =
Cov(X,Y )√
V ar(X)V ar(Y )

, −1 ≤ ρX,Y ≤ 1

Suppose X,Y ∼ fX,Y (x, y) and E(X) = µ1, E(Y ) = µ2, V ar(X) = σ21, V ar(Y ) = σ22. If

U = X−µ1
σ1

, V = Y−µ2
σ2

, then E(U) = 0 = E(V ), V ar(U) = 1 = V ar(V ), Cov(U, V ) =
E(UV ) = Corr((X,Y ) since

E(UV ) = E

((
X − µ1
σ1

)(
y − µ2
σ2

))
=
E((X − µ1)(Y − µ2))

σ1σ2
=

Cov(X,Y )√
V ar(X)V ar(Y )

Consider V ar(U+V ) = V ar(U)+V ar(V )+2Cov(U, V ) = 1+1+2ρU,V =⇒ 2+2ρU,V ≥
0 =⇒ ρU,V ≥ −1 Similarly, V ar(U − V ) = 2− 2ρU,V ≥ 0 =⇒ ρU,V ≤ 1.
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Now, let V = ρU +
√

1− ρ2Z where Z ∼ N(0, 1). Then

E(UV ) = E(ρU2 +
√
1− ρ2UZ)

= E(ρU2) + E(
√
1− ρ2UV )

= ρE(U2) +
√

1− ρ2E(UZ)

= ρ+
√
1− ρ2 · 0 = ρ

6.1 Conditional Mean and Variance

The Conditional mean and conditional variance is defined as

µY |X = E(Y |X) =

∫ ∞

−∞
y fY |X(y|X) dy

V ar(Y |X) =

∫ ∞

−∞
(y − µY |X)

2fY |X(y|X) dy

• E(E(Y |X)) = E(Y )

• V ar(Y ) = E [V ar(Y |X)] + V ar [E(Y |X)]

• E(Y |X) minimizes E(Y − f(X))2 for all functions f .

Example. Suppose events happpen with poisson process of rate λ. Let X be the time
of the first event and Y be the time of the second event. The joint PDF is defined as
fX,Y (x, y) = λ2e−λy. Find the conditional mean variance of X|Y and Y |X.

fX(x) = λe−λx, x > 0, fY (y) = λ2ye−λy

=⇒ fY |X(y|x) =
λ2eλy

λe−λx
= λe−λ(y−x), fX|Y (x|y) =

1

y
=⇒ X|Y ∼ Unif(0, y), Y |X ∼ x+exp(λ)

Thus, E(X|Y ) = y
2 , V ar(X|Y ) = y2

12 , E(Y |X) = X + 1
λ , V ar(Y |X) = 1

λ2
.

E(E(X|Y )) = E(
Y

2
) =

2

λ
·1
2
=

1

λ
,E(V ar(X|Y )) = E

(
Y 2

12

)
=
V ar(Y ) + (E(Y ))2

12
=

2

λ2
+

(
2

λ

)2

=
1

2λ2

E(E(Y |X)) = E

(
X =

1

λ

)
=

2

λ
, E(V ar(Y |X)) =

1

λ2

V ar(E(X|Y )) = V ar(
Y

2
) =

1

2λ2
, V ar(E(Y |X)) = V ar

(
X +

1

λ

)
= 0

Look at proofs for the formula above.

For second:

µ(X) = E(Y |X). RHS = E(V ar(Y |X))+V ar(E(Y |X)) = E
[
E(Y 2|X)− (E(Y |X))2

]
+V ar(µ(X))

= E[E(Y 2|X)]− E[(µ(X))2] + E(µ(X)2)− (E(µ(X)))2 = E[E(Y 2|X)]− (E(µ(X)))2
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= E(Y 2)− (E(µ(X)))2) = E(Y 2)− (E(Y ))2 = V ar(Y )

For third:, µ(X) = E(Y |X)

E(Y − f(X))2 = E(Y − µ(X) + µ(X)− f(x))2

For the 2ab term,

E((Y − µ(X)(µ(X)− f(X)))︸ ︷︷ ︸
W

) = E(W ) = E(E(W |X))

E(W |X) = E((Y − µ(X)(µ(X)− f(X))|X)) = (µ(X)− f(X))E(Y − µ(X)|X)

E(Y − µ(X)|X) = E(Y − E(Y |X)|X) = E(Y |X)− E(Y |X) = 0 =⇒ E(W ) = 0

=⇒ E(Y − f(X))2 = E[(Y − µ(X))2] + E(µ− f(x))2︸ ︷︷ ︸
=0

= E(Y |X)

Example. In the month of October, the mean and the variance of the amount of rainfall
on a rainy day are respectively 1cm and 1cm2. However, the number of rainy days in
October follows Bin(30, 0.2). implying that average number of rainy days in October is 6
and variance of the number of rainy days is 24 and 5. Calculate the mean and variance of
total amount of rainfall in the month of October.

Let Yi be defined as the amount of rainfall on the ith rainy day, with i = [1, N ] and N =
total number of rainy days. Define T as the total amount of rainfal, where T = Y1+...+YN .
N ∼ Bin(30, 0.2) =⇒ E(X) = 6, V ar(X) = 4.8. Given E(Yi) = 1, V ar(Yi) = 1.

E(T ) = E(E(T |N)), with E(T |N = E(Y1+...+YN |N) = E(Y1)+...+E(YN ) = 1+...+1 =
N = 6 =⇒ E(T ) = 6

V ar(T ) = E(V ar(T |N)) = V ar(E(T |N)) where V ar(T |N) = V ar(Y1+...+YN |N) = V ar(Y1+...+YN ) = N

V ar(T ) = E(N) + V ar(N) = 6 + 4.8 = 10.8

6.2 Moment Generating Functions

The moment generating functions of a random variable X denoted by MX(t) is

MX(t) = E[etX ]

This can be used to find the moments of distribution, where

etX =

∞∑
i=0

(tX)i

i!
=⇒ MX(t) = E[etX ] = 1+ tE[X]+

2tE[X2]

2!
+ ... = 1+ tm1+

2tm2

2!
+ ...

In particular, MX(0) = 1,M ′
X(0) = E[X],M ′′

X(0) = E[X2], ...,.

Look at Binomial, Poisson, Uniform, Normal, Chi-squared moment generating functions.
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Example. Let X ∼ Bin(n, p).

E(etX) =
n∑

X=0

etx
(
n

x

)
px(1− p)n−x

=

n∑
X=0

(
n

x

)
(etp)x(1− p)n−x = (etp+ (1− p))n

Example. Let X ∼ Pois(λ).

E(etX) =
∞∑
x=0

etx
e−λλ

x

x!

= e−λ
∞∑
x=0

(etλ)x

x!
= e−λee

tλ = ee
tλ−λ

Example. X ∼ exp(λ)

E(etX) =
∫ ∞

−∞
etxfX(x) dx =

∫ ∞

0
etxλe−λx dx = λ

∫ ∞

0
e(t−λ)x dx =

[
λ(et−λx)

t− λ

]∞
0

=
λ

t− λ
, t < λ

=⇒ M(t) =

{
E[etx], t < λ

∞, t ≥ λ
M(t)

7 Limit Theorems

For notations, we say cn → 0 if, for every ϵ > 0, we can find N(ϵ) such that |cn − c| < ϵ
for all n ≥ N(ϵ).

Let {Zn} be a sequence of random variables that converges.

For L2 convergence, we say {Zn} → c if E(Zn − c)2 → 0.

E(Zn − c)2 = E(Zn − µn + µn − c)2

= E(Zn − µn)
2 + E(µ− c)2 − 2E[(Zn − µn)(µn − c)︸ ︷︷ ︸

=0

]

= V ar(Zn) +Bias2(Zn) → 0

if V ar(Zn) = 0 and µn → c.

In probability, we say {Zn} → c if for all ϵ > 0,

lim
n→∞

P (|Zn − c| > ϵ) = 0

Example. Suppose X1, X2, ... are i.i.d. random variables with X̄n = (X1 + ... +Xn)/n.
Suppose ∀i, E(Xi) = µ, V ar(Xi) = σ2. Then E(X̄n) = µ, V ar(X̄n) = σ2/n. E(X̄n−µ)2 =
V ar(X̄n) = σ2/n→ 0 as n→ ∞ =⇒ X̄n

L2

−→ µ. also
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Markov’s inequality states that for non-negative random variableX, then for any a > 0,

P (X ≥ a) ≤ E(X)

a

Chebyshev’s inequality states that if X is a random variable with mean µ and variance
σ2, then for any k > 0,

P (|X − µ| ≥ k) ≤ σ2

k2

For epsilon ϵ, we can conclude

P (|X − µ| ≥ ϵ) ≤ σ2

ϵ2
=

σ2

nϵ2
→ 0 ∋ n→ ∞ =⇒ X̄n

P−→ µ

The Weak Law of Large Number states that for i.i.d. random variables X1, ..., Xn

with E[Xi] = µ, then for any ε > 0,

P
[∣∣∣∣X1 + ...+Xn

n
− µ

∣∣∣∣ ≥ ε

]
→ 0 as n→ ∞

We say sequence {Xn} converges to X weakly and write Xn →d X if FXn(x) → FX(x)
for all x. Thus, we can approximate P (a ≤ Xn ≤ b) ≈ P (a ≤ X ≤ b).

Central Limit Theorem states that for i.i.d. random variables X1, ..., Xn with mean µ
and σ2, then

X1 + ...+Xn − nµ

σ
√
n

≈ N(0, 1) as n→ ∞

Strong Law of Large Number states that for i.i.d. random variables X1, ..., Xn with
E[Xi] = µ, then

P
[
lim
n→∞

X1 + ...+Xn

n
= µ

]
= 1
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