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1 Basic Probability Foundations

We define the sample space () as all possible events. Events E are thus just subsets of
Q(ECQ). It is also the case that ) = Q°.

Mutually disjoint sets A, Ag, ... are sets where A4; N A; =0, Vi # j.

Theorem. De Morgan’s Laws state that

(AUB) = A°N B° (ANB)¢ = A°UB°

The axiomatic definition of probability states that the probability must satisfy
1. P(E) >0
2. PQ)=1

3. For mutually exclusive events Ei, ..., E;,
o o
P (U E) => P(E)
i=1 i=1

2 Conditional Probability and Independence

Definition. For events A and B with P(B) > 0:

P(ANB)

PAIB) = =5

P(B) = P(BNA)UP(BnNA®) = P(A)P(B|A) + P(A°)P(B|A°)

2.1 Bayes Theorem

The Bayes Theorem is important in allowing us to compute unknown probability given
known info.
P(Ey)P(Es | Ev) P(Ey)P(E; | Ev)

PEE) = =5y = PE)P(Es [ By + PUED) P(Es | EY) )

Definition. A being independent of B means that knowing B has occurred does not
change P(A). This implies that P(A) = P(A | B), which means

P(AN B) = P(A)P(B)

Corollary. A, B independent <= A, B¢ independent <= A°, B independent <= A¢, B¢
independent.

Note that this is very different from disjoint events. Disjoint sets are never independent
unless one or both has probability 0.



3 Random Variable

Mathematically, a random variable is a function from €2 to real numbers.
We denote the set of possible values (or state space) of X by X', where
X ={X(w): X e}

The function px(x) = P(X = z),z € R. is called the probability mass function
(PMF). The PMF of a discrete random variables satisfy the properties that

px(z) >0 for all = and Z px(z) =
TEX

We can also describe probability as its cumulative distribution function (CDF),
where
Fx(z)=F(z)=P(X <z), —co<z <00

3.1 Probabilities of Limiting Sets
Supposes that events By, ..., are increasing such that
BicByC..., B=BiUByU...

Then we can write B, T B and
P(B) = P(U2,By) = lim P(B,)

n—oo

3.2 Expected Values
Suppose X is discrete with PMF px(z) for z € X, then

= Z xpx (), if Z |z| px () < 00

reX TEX

Pull-back trick is where we assume that €2 is a countable space and expectation exists.

Then
= Z rpx(x) = Z X(w)P(w
zeX wef
Now, let X = {x1,x9,...}. Then E; = {w: X(w) = z;, },i = 1,2, ... partitions w. In other
words, E; NEj =0, Ey UEy U ...

E(X1+X3) = ) (X1+X2)(w)P(w) = Y _{Xiw+XowP}P(w) = Y Xi(w)P(w)+ Y | Xa(w)P(w)

weN we weN weN

Also let g be a function and g(X) is a discrete random variable. Then
E(g(x)) =Y g(x)px (@), if Y lg(x) px (=
zeX zeX

Common properties include



1. E(aX)=0a(E(X)),3a R
2. E(c)=c¢,dceR

3.3 Variance
Var(X) = 0% = E[(X — p)*] = B(X?) - B(X)?
Common properties include: (proofs trivial)
1. Var(X) >0 (E(X?) > u?)
2. Var(X)=0 = P(X=p)=1
3. Var(aX +b) =a*Var(X), Ja,b € R
4. Var(X1 + X2) = Var(X;1) + Var(Xs) does not apply in most situations.

When expanded, we have
V(I’I"(Xl + XQ) = Var(Xl) + VCLT(XQ) — QE[(Xl — ,ul)(Xg — #2)]
The last term is defined to be the covariance, where

Cov(X1,X2) = E[(X1 — 1) (X2 — p2)]

3.4 Common Sense Random Variables
For Bernoulli situations, we have E(x) = p and Var(X) = p(1 — p)

Binomial random variables is when n Bernoulli random variables are repeated, with
Yy ~ Bin (n,p) PY =y) = <n>py(1 —p)"
Y
EY)=np Var(Y) =np(1 —p)

3.5 Non-trivial things

> 1
E(Il):ij(l—p)k 'p=-
k=1 p
d >, d 1 1 > 1
dx; dwl—x_(l—a:)2_nzzon v
> 1
L an—1 _ —
Zn 2" (1 —x) .
n=0
Let =1 — p, then
= 1
don-(1-phlp==
n=0 p



To compute E(I?), we differentiate twice and get

3 —D2" 1 -2 :72
n;mn D" (1 -2) = T

With n — 1 = k,

3.6 Middle School Level distributions: geometric

Geometric distribution has “lack of memory” property, where
P(I>k+n|I>n)=P(>k)
Proof. Trivial To prove again:

P(Il = kl and IQ = k‘g)

P(Iy=ky) =Y P(hi=kiand Iy =ky) = > (1=p)" Lp-(1-p)* " p = .. = (1-p)> " "p-1,
ki=1 ki=1

3.6.1 Waiting Times
The pmf of W, is

P(w, = n) = P(rth success in n toss)

Thus,

n—1

P(WT:n):P(Yn_l:r—l,anl):( .
T‘_

>pr—1(1 o p)n—l—(r—l) p

—1
= (:_1>p’"(1—p)”r, n=rr+1..

W, is known as negative binomial random variable with r and p such that W, ~

NB(r,p). It follows that
= (n—1
(1 —p)* T =1
Z(T_JN )

n=r

For expected values we know that W, = 2;1 I, so

T
1 1 T
EW,)=> Li=—+4..4+-=-
P p p P
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r(1—p)

Var(Wy) > Var(ly) + ... + Var(lz) = pe

An important property is that
o) E—1 r—1 n
W, >n]=[Y, <r] = Z (T - 1>pr(1 )k = Z <k>pk(1 _pynk
k=n+1

We can reach maximum peaks by comparing successive negative binomial probabilities:

R(y) = —Pe) = <7“— 1>

Cpwly—1

3.6.2 Hypergeometric Distribution

Given that there are n successes among N trials, what is the probabillity that there are x
successes among the first m trials? Here z is nonnegative integer and m < N.

(m) - (Gs)
G

PYp,=z|Yy=n)= x = max(0,n +m — N), ..., min(n, m)

Look at slides for a bit more detail

If N — oo, 47 — p and H becomes Bin(m, p)

3.6.3 Poisson Distribution

y
P(Y =y) = e*Ai', p=TEX)=\ Var(Y) =\
y!
Proving E(\) simply requires difference of infinite geometric sum.

E(Y) =) yP(y)
y=0
0 ye—k)\y o0 \Y

= | :e_)\z 1 | :)\C_Ae)\:)\

= v —(y—-1)

Proof. Begin with the normal formula for binomial distribution. Substituting p = % and
considering the convergence of n and p,

| Y n-=y 1 n -y Y,o—A
_n .A.<1_A> :.Ay<1_k> (1_A) _ Me
yln—y)! n¥ n y! n n y!




La Cam’s theory...

4 Continuous Random Variables

Definition. A continuous random variable X takes a continuous range of values as
opposed to a discrete random variable for which the set of possible values is at most count-
able. Typically, a continuous random variable variable X is described by a probability
density function (PDF) fx(z), so that a probability within the interval [a, b] is given by

b
pX(x):/ fx(z)dx

We also have Fy(z) = P(X < x), where X is continuous iff Fy(z) is continuous. Assume
that Fx(z) is differentiable and fx(x) = F ().

A density fx also satisfies

fx(x)>0  and /OO fx(z)de =1

Note that fx(z) is not a probability, so we can have fx(z) > 1.

For any continuous random variables X, then for any number ¢, P(X = ¢) = 0.

4.1 Expectation and Variance
Suppose X is a continuous random variable with PDF f(z). Then

4= E(g(z)) = / " g(@)f(x)dr,  provided / T @@ <o (3)

—00 —00

o0

7 =Var(X) = B((X = 5] = | (2= p)fla) do = BX?) - (4)

—0o0

4.2 Uniform Distribution

In uniform distribution, X takes values in an interval [a, ] :

flx) = a<z<b




4.3 Exponential Random Variables

Exponential Random Variables is useful to describe time for an event to ccur or life-time
of a component, where
erea:p()fx() XM, x>0

E(X)= X’ Var(X) = %

This also has the memoryless property.

l—e ™ >0
Fx(x) = '
x(@) {0, otherwise

4.4 Poisson Process

Let T4, ..., T, be times when an event occurs. We use N(t) to dente the number of events
up to and including time ¢t. Also let N(J) be the number of events in the time interval J.
Then, N(t) where t > 0 is a Poisson process with rate \ iff

1. Outcomes in disjoint intervals are independent. Formally, J; and J, are independent.

2. N(t) ~ Pois(At) for all ¢ > 0. In other words, N(J) ~ Pois(A|J|)
We can conclude that

P(T1 >t)=P(N(t)=0)=e M — T} ~ ¢

Now,let It =T, 1o =To —T1,I3=T3 —T5,..I;, = T}, — T},_1 and {X m) } be outcomes of

coin tossing experiments where success probability = p,,, and n = r}w =, ... Thus, Number

of successes up to time ¢ is essentially number of successes in mt tosses. As m approaches
infinity, we have mp,, approach \.

The probability of no heads up to time ¢ is

mt Am mt —At
(1 —pm) _(1_E) —e
Now, we have
il e_)‘t )\t
P(Ty > t) = P(N(t) < k) = P(Pois(\t)
=1

Therefore if Fy, is CDF of Ty,
= 1e_>‘t )\t
T, >t=N(t) < k,N(t) ~ Pois(A\t) = 1—Fy(t) = P(T} > t) = P(Pois(\t)
i=1
Differentiating both sides and taking derivative, we have the PDF where
e—)\t()\t)k—l
(k—1)!

Here, fi is known as gamma density with parameters k£ and A\, where

fre(t) = A

Ty ~ gamma(k, \)



4.4.1 Gamma Variables

Continued from previous as continuation of exponential random variables. We define
(o]
I(r)= / e %z" tdr, r >0
0
We have X ~ gamma(r, \) where PDF is

fX(fU) _ F<17,.))‘r$r_le_)\

since I'(r) = (r—1)! for integer values of r. This is due to the fact that I'(r) = (r—1)I'(r—1).
The CDF Fx(z) is not known analytically unless r is a positive integer.

Pr+1) _r Var(X) = —

E(X) = T(r)x A 22

B(X) = /Oooxfx(w) dz = /Ooo e

1 /°° _
— /\rmre wi
L(r) Jo

F(?“ + 1) /OO AT+1 r_—AT
AL'(r) Jo T(r+1)
Lr+1) +T(r) T
A

AL(r)  AT(r)

For the variance,

E(XZ) :/OOOCL,ZfX(x) d.CU:/OOO m)\rxﬂrlef/\x

1 * +1 A
= AN Tie™
I'(r) /0

F(T+1) /OO >‘T+1 r_—AT
o T

= AT(r) r+1n"©
_Tr+2) (r+1DC(E+1)  r(r+1)
A2T(r) A2D(r) DY

Var(X) = B(X?) — (B0 = L) (7)o

4.5 Normal Distribution

Normal distribution X has the density function

1 S B
f(z) = 5 e 502 (@ “)2,—oo<x<oo,—oo<,u<oo,a>0 (5)
To

10



The standard normal density with = 0,0 =1 is written as ®(X) where

z 1
O(x) = / e_%gc2

oo V2T

Note the 68-95-99.7% rule.

Normal distribution is often used to approximate a lot of distributions such as binomial,
poisson, and gamma.

For X ~ Bin(n,p), n large and p not close to 0 or 1. then
X ~ N(np,np(1 - p))
For X ~ pois(\) and A large, then
X~ N\ N
For X ~ gamma(r, ) and r large, then

VEN (55

When we are approximating binomial distribution X with normal distribution Y, we

should use
P(X <z)=P(Y <z+0.5)

because of the discontinuity of binomial distribution.
4.6 Transformation of Continuous Random Variables
Suppose we have distribution X and Y such that Y = aX + b, where a > 0.

Fy(y)=P(Y <y)=PaX +b<y)

:P(aX<y_b):P<X<ya_b>:Fx<y—b>

fr(v) = Foly) = fx (y‘b) dy=b_ . <y—b>.1

a dy a a a

This could be generalized as Y = ¢(X) where ¢ is a monotone differentiable function.
Thus,

Fy(y) = P(p(X) <y) = P(X < ¢ (y)) = 1-Fx(¢" (1)), fr(y) = fx(¢™'(y) jysol(y)'
Example. Suppose Y = eX = p(X) and X ~ N(u,0?).
X=lY =¢ (Y) = ddyw_l(Y) :; = fr(y) =fx(<p_1(Y))dC;<p‘1(Y) = \/21?06‘2012“0“‘“)2

11



Y is known here as the log normal random variable.
With uniform random variable Y ~ unif(0,1),
P(Y <y) = P(Fx(z) <y) = P(X < Fx'(y)) = Fx(Fy'(2)) = 9,0 <y < 1

Example. X ~ N(0,1). Find PDF of Y = X2

fx(@) = ¢(X) = Fy(y) = P(Y <y) = P(X* <y) = P(—\/y < X < /y) = ®(\/y)-P(—/y)
PDF of Y is
d 1 1 y

fY(y):@(2@(X)—1):2¢(ﬂ)‘ﬁay>0: Nors Y
11

Thisis Y ~ gamma(3, 5), and is also known as X3 distribution (chi-square random variable
with degrees of freedom = 1)

5 Jointly Distributed Random Variables

X,Y are jointly continuous with density fx y if for any a < b and ¢ < d,
PesX<besvsa=[ [ fe@pdedy
[a,b] x[e,d]

Conceptually, the double integral is the volume under the surface given by {(z,y,2) : z =
fxy(z,y)} over a region covered by [a,b] x [c,d].

We can get marginal densities from
@ = [ fer@ndy fwo) = [ frryds

Ezercise: Prove this (not fully trivial); see slides
Look at example from slides. (example 3 expansion below)

—Az -
e M€ s,y Adye

P(..)=e 1 1

= )\26_)‘3/5153,6_)‘63” ~ Age_’\yéxdy—i— smaller terms

Calculating marginal densiities for example 3,

1

] y
= 2e— Ny — [ \2e— M —\2,,,— Ay
fy(y) /0 Ne dx [)\e x}o_/\ye y>0 = (2)

Ny2e ™ 4y >0

fx(z) = / Me M dr = e 2 >0

12



5.1 Joint CDFs

We define the joint CDF of the continuous bivariate random variable as
x oy
Fxy(z,y) =P(X <zY <y)= / / fxy (u,v) dudv
—o — 0o
Maybe add in parts from slides.

5.2 Independence

Two random variables X, Y are independent iff for every A and B the events [X € A] and
[Y € B] are independent, then P(X € A,Y € B) = P(X € A)- P(Y € B). Equivalently,
two events are independent iff Vzx, gy,

Fxy(z,y) = Fx(z)Fy(y) Ixy(z,y) = fx(@)fy(y)

5.3 Conditional PMF and PDF

fxy(zly) = f?yz(j) frix(y|z) = @)

5.4 Transformation of Bivariate Random Variables

Assume we have random variables (X,Y’) with joint PDF fxy(z,y). Let U = g1(X,Y)
and V = ¢o(X,Y). Let g(g1,92) be injective and surjective so that we can solve X =
1 (U, V), Y = 9(U, V). Then,

oY1

fov(u,v) = fxy (1(U,V),2(U,V)) x |Jacobian Determinant|, where J = 8y,
oV

ey
B
ou
Example. X ~ N(0,1) and Y ~ N(0,1) and X and Y are independent. Now, we have

U=X+YandV=X-Y.

First, we get X = % and Y = % The Jacobian determinant = —%. We also know

12 2
that fxy(z,y) = fx(z) - fr(y) = \/%6_7 : \/%6_%- Thus,

,U2
T = U,V ~N(0,2)

U+V U_V>1_ 1 _u2+v2 1 u2 1

nyv(u,U) = fX,Y < 5 5 e 1

2 Ar Var \/E
Example. XY ~ exp(l) and independent. U = X +y,V =X —Y.

U+V U—V>

fU,V(%U):fX,Y( 5 g %

= 0<|v|<u<oo

0<z <o 0<%<oo —v<u< oo
— e
v<u <o

0<y<oo 0< %Y <

13



1 1
fU,V(U»U):fX,Y< 5 T =g 0<ul<u<oo

u+v u—v\ 1 _U+V _U-V
—=e 2 -e
2

u
1
fu(u) = / 56_“ dv=wue "0 <u<oo = un~ gamma(2,1)

fv(v) = —e “du=—e " —oo<v <00
v 2 2
Here, V' is known as a double exponential random variable.

Example. X ~ gamma(r,\),y ~ gamma(s,\). X,Y independent. U = X + Y,V =
X
X+Y"

Since T1|Ty =t ~unif(0,1) = £ |Ty =t ~unif(0,1).

|4 U

X=UVY=U-X=U1-V)0<u<oo,0<v<]l = J—‘l_v _U‘——U
P (@.y) = (@) fy(y) = oAl e Mg Xy e N = ey A
Y I'(r) I'(s) L'(r)T'(s)
foy(u,v) = fxy (wo,u(l —v)) u= WA”SUTJFS_Ie_Mv”_I(l — )"
1 r+s—1yr+s_—Au F(T + 8) r—1 s—1
_ —— - — . 1 J—
e R v Ty R S
Thus, U,V independent with U ~ gamma(r + s, ) and V' ~ beta(r, s).
5.5 Beta Distribution
U ~ beta(a, B) if
1 1 - L'(a)l'(8)
= a=1(1 — )71, where B(a,8) = =~ and 0 < u < 1
fu(u) B(a,ﬁ)u (1 —w) where B(a, ) (ot B) an u
Q af
U)=—,Var(U) =
=275 V"V = i pras s+
1 1 1 ! B(r+1,s) r
E — a—1 1— B—1 — / B+1-1 1— a—ld — ) —
0= Vg e = gy [, T = T~

Note that beta(1,1) = unif(0,1)

Sum of independent x? random variables

Suppose Zy, ... are i.i.d. N(0,1) random variables. The distribution of Z7+...+Z2. Recall
that Z7 ~ x? = gamma(3,3) = Z?+ Z3 ~ gamma(3 + 3,3) = Zi+ .+ 22 ~

gamma(s, 3) = X;,

14



5.6 Bivariate Normal Distribution

(X7Y) ~ fX,Y(x7y)' Suppose fX(x) = N(MlaU%)th(y) = N(:u270'%>7 we have jOiIlt
probability

Fry(2,y) = 27T0_102h6xp [_2(1 i = ((fv ;1N1>2 4 (y;;@> —2p (“‘ ;1“1> (y ;2M2>)]

With this bivariate normal distributions, we have properties

X ~ N(ILLI’O-%)7 X ~ Y(:U’Qvo'%)

Fxpy (aly) ~ N (ul 40y ), o1 - p2>> C Fyix(yle) ~ N <u2 402y ), o1 - p2>) ,

aX +bY ~ N (a,ul + bus, QQJ% + 2abpoioe + 6203)
If p =0, then X and Y are independent.

5.7 T Distribution
Suppose that Z ~ N(0,1), W follows x2 and Z and W are independent. Define

Then,T follows t dis tribution with n degrees of freedom with density

n+l 2\ — 5t
0= it (1+7)

Proof. Let T = Z/\/%, V=W = Z= T\/g. The jacobian matrix is
det % | = \/K
0 1 n

V27 I'(3)2

n+1
Vv \%4 1 1 2 n+1 v 2
t,v)=fzw [t/ — = ft) = —— | = +1,-Y(1+5)
fry(t,v) = fz, (\/n,V> Vo f(t,v) NN e <2> Vi e

Thus, find fr(t) after transformation yields

f(z,w0) = fz(2) fw(w) =

15



5.8 F Distribution
Suppose that W follows x?2,, V ~ x2 independent. Define

= (W/m)/(V/n)
6 Properties of Expectation

fxyy(z / Ix(z—y)fy(y)dy

X1, ..., X, are jointly continuous with density f and Y = g(Xi,..., X},). Then

E(Y):/ yfy(y / / 9(@1s ooy @) f(@1, ooy T0)dar ... dy

Define covariance between X and Y as
Cov(X,Y) = E[(X — ux)(Y — py)] = E(XY) - E(X)E(Y)

Since [(X —puz) (Y —py)] < 5[(X —px)*(Y —py)?] = 2C0v(X,Y) < Var(X)+Var(Y).
Properties:

o Cov(X,Y)=Var(X)

o Cov(aX,Y) =aCov(X,Y)

e CoV(X+Y,Z)=Cou(X,Z)+ Cov(Y, 2Z)
In general,

Var (zn: X,) = Zn: Var(X;)+2) ) Cov(X;, X;)
i=1 i=1 i<j

We define correlation between X and Y as

Cov(X,Y)

1< <1
PX)Y = \/Var War( ) SPXY S
Suppose X,Y ~ fxy(z,y) and BE(X) = u1, E(Y) = pa, Var(X) = o2, Var(Y) = o3. If
U =28y =X then E(U) = 0 = E(V),Var(U ) 1 = Var(V), Cov(U,V) =

EUV) ~ Corr((X, Y) since

son=5((552) (57))- S

Consider Var(U+V) = Var(U)+Var(V)+2Cov(U,V) = 1+14+2ppy = 2+2pyy >
0 = pyy > —1 Similarly, Var(U - V) =2—-2pypy >0 = pyyv < 1.

16



Now, let V = pU + /1 — p?Z where Z ~ N(0,1). Then

E(UV) = E(pU? + /1 - p2UZ2)
= E(pU) + E(V1 - p2UV)
= pE(U*) + V1 - p*E(UZ)
—p+V1-p20=p

6.1 Conditional Mean and Variance

The Conditional mean and conditional variance is defined as

o0

pyix = E(Y|X) = / y fyx (4] X) dy

[e.9]

Var(Y|X) = / (y— MY|X)2fY|X(Z/|X) dy

e E(E(Y|X))=E()
e Var(Y) = E[Var(Y|X)] + Var [E(Y|X)]
e E(Y|X) minimizes E(Y — f(X))? for all functions f.

Example. Suppose events happpen with poisson process of rate A. Let X be the time
of the first event and Y be the time of the second event. The joint PDF is defined as
fxy(z,y) = A2e~?. Find the conditional mean variance of X|Y and Y|X.

fX(:E) = )\e—)\m’ T > 07 fY(y) = )\de—)\y
A2eMY
e~ Az

2
Thus, E(X|Y) =4, Var(X|Y) = %5, E(Y[|X) = X + 5, Var(Y|X) = 35.

Y2 Var(Y)+ (E(Y))2 2 [2\* 1
BWarxpy) = B () = PO EOE 2 (2)

A(y—z 1 .
= frix(ylz) = = Ae M), fry(aly) = y = XY~ Unif(0,y), Y|X ~ atexp(d)

E(E(X|Y)) = E(%) _ %% _

> =

E(E(Y|X))=E <X = i) = ; E(Var(Y|X)) = %

Var(E(Y|X)) = Var (X + 1) —0

Var(E(X|Y)) = Var(z) 3

1
27 2)\2’

Look at proofs for the formula above.

For second:
wX)=EY|X).RHS = E(Var(Y|X))+Var(E(Y|X))=FE [E(YQ\X) — (E(Y\X))2]+Var(u(X))

= BIE(Y?|X)] - E[((X))*] + E(u(X)?) = (B(u(X)))* = BIE(Y?|X)] - (E(n(X)))
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For third:, u(X) = E(Y|X)
B(Y — f(X))? = B(Y — u(X) + u(X) — f(x))?
For the 2ab term,
E((Y — p(X)(u(X) = f(X)))) = E(W) = E(E(W|X))
w
E(WI[X) = E((Y — p(X)(u(X) — f(X))]X)) = (u(X) = f(X))EY — p(X)|X)
EY —uwX)X)=EY -EY|X)|X)=EY|X)-EY|X)=0 = EW)=0
= E(Y — f(X))* = B[(Y — u(X))’] + E(u — f(2))* = E(Y|X)
—_————

=0

Example. In the month of October, the mean and the variance of the amount of rainfall
on a rainy day are respectively lcm and lcm2. However, the number of rainy days in
October follows Bin(30,0.2). implying that average number of rainy days in October is 6
and variance of the number of rainy days is 24 and 5. Calculate the mean and variance of
total amount of rainfall in the month of October.

Let Y; be defined as the amount of rainfall on the ith rainy day, with i = [1, N] and N =
total number of rainy days. Define T as the total amount of rainfal, where T' = Y1 +...+Yn.
N ~ Bin(30,0.2) = E(X) =6,Var(X)=4.8. Given E(Y;) =1,Var(y;) = 1.

E(T) = E(E(T|N)), with E(T|N = E(Yi+...4Yx|N) = E(V1)+..+B(Yy) = 1+..41 =
N=6 — E(T)=6

Var(T) = E(Var(T|N)) = Var(E(T|N)) where Var(T|N) = Var(Yi+..4Yy|N) = Var(Yi+..4Yn) = N
Var(T) = E(N)+ Var(N) =6 +4.8 =10.8
6.2 Moment Generating Functions
The moment generating functions of a random variable X denoted by Mx(t) is
Mx (t) = EBle']
This can be used to find the moments of distribution, where

2 E[X?) 2tmy
e = 1+tmq + o

e = i (X — Mx(t) = E[e"X] = 1 +tE[X] +

- +...
1=0

7!

In particular, Mx (0) = 1, M%(0) = E[X], M%(0) = E[X?], ...

Look at Binomial, Poisson, Uniform, Normal, Chi-squared moment generating functions.
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Example. Let X ~ Bin(n,p).

1-Eeor

Example. Let X ~ Pois()).

Example. X ~ exp()\)
(9] 00 00 Alet=A o0 b
E(e'¥) = / e fx(z)de = / e re™N dy = )\/ N gy = { (e x)] =
oo 0

7 Limit Theorems

For notations, we say ¢, — 0 if, for every ¢ > 0, we can find N(e) such that |¢, — ¢| < €
for all n > N (e).

Let {Z,} be a sequence of random variables that converges.
For L? convergence, we say {Z,} — cif E(Z, —c)? — 0.
E(Zy — ¢)* = B(Zn — pin + pin — ¢)?

= E(Z, - Hn)Q + E(p — 0)2 —2E[(Zn — pin) (pin — ©)]
=0

=Var(Z,) + Bias*(Z,) — 0
if Var(Z,) =0 and p, — c.
In probability, we say {Z,} — c if for all € > 0,
lim P(|Z,—c¢c/>¢) =0

n—oo

Example. Suppose X1, X5, ... are iid random variables With_ X, = (X1 + et Xp)/n.
Suppose Vi, E(X;) = p, Var(X;) = 0°. Then E(X )=, Var(X,) = o%/n. B(X,—un)? =

Var(X,) =0%/n - 0asn — o0 = X, —>,u also
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Markov’s inequality states that for non-negative random variable X, then for any a > 0,

E(X)

P(X >a)<

Chebyshev’s inequality states that if X is a random variable with mean p and variance

o2, then for any k > 0,
2

o
P(X —pl 2 k) < 7
For epsilon €, we can conclude
o? o? = P
P X-p[>e)< 5=-—F5—=203n—>0 = X,, = p
€ ne

The Weak Law of Large Number states that for i.i.d. random variables X1, ..., X,
with E[X;] = u, then for any € > 0,

P[X1+...+Xn
n

—u’Ze]%Oasn%oo

We say sequence {X,} converges to X weakly and write X,, —4 X if Fx, (z) — Fx(z)
for all . Thus, we can approximate P(a < X, <b) =~ P(a < X <b).

Central Limit Theorem states that for i.i.d. random variables X1, ..., X,, with mean p

and o2, then
X1 4+ ...+ Xn —-n

ov/n
Strong Law of Large Number states that for i.i.d. random variables Xi, ..., X,, with
E[X;] = p, then

B N(0,1) as n — oo

Xi1+..+X
P th:M

n—00 n

=1
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