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1 Intro

Stochastic Process: A random measurement evolving in time which could be discrete or continuous (Ex.
Price of stock, temperature). We will study some basic building block of type of stochastic processes that
are applied to model many more realistic processes.

1. Markov Process. Discrete time, taking finitely many values (Markv Chains). Or Continuous time.

2. Poisson Process and its generalizations.

3. Brownian Motion

4. Stochastic Integral with respect to Brownian motion.

2 Markov Processes

Definition. Stochastic Process. If Xt is value of the process at time t ∈ T , {Xt} is the set of random
variables.

We denote Xn for discrete values. In this case, Markov Chain {Xn}n∈N where each Xn taies values on a
set S = {N} (called state space of the process) and the following so-called Markov property holds:

P [Xn+1 = j|Xn = i,Xn−1 = in−1, ..., X0 = i0] = P[Xn+1 = j |Xn = i]

= P [X1 = j|X0 = i]

This means that

1. Future and past are independent given present (memoryless)

2. The process is homogenenous, where given Xn, the process resets itself and we can assume it starts
over in time.

Definition. The Transition Probabilities of the Markov chain is defined as

p(i, j) := P[Xn+1 = j |Xn = i] = P[X1 = j |X0 = i]

and we can represent the Markov chain as a transition matrix of

P =


p(1, 1) p(1, 2) ... p(1, N)
p(2, 1) p(2, 2) . . . p(2, N)

...
...

. . .
...

p(N, 1) p(N, 2) . . . p(N,N)


We can represent the transition probabilities as a directed grapp where vertices are states joined by arrows,
named according to the corresponding transition probabilities.

Example. (Ehrenfest Chain) There are 2 urns with N balls. We pick one ball at random and move it to
the other urn. Xn is number of balls in the first urn after the nth urn. At the beginning, there are 4 balls
in the first and 3 balls in the second. What is the state space S, the transition probability and matrix, and
the transition graph?

S = {0, ..., N}. With

p(i, j) =


i
N , j = i− 1
N−i
N , j = i+ 1

0, otherwise

, P =

 0 1 0 0 0 . . .
1
N 0 N−1

N 0 0 . . .
0 2

N 0 N−2
N 0 . . .
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Example. Let Xn be the invevntory at the end of day n, and Dn+1 is the demand in day n+ 1.

P[Dn+1 = i] =


0.3 i = 0

0.4 i = 1

0.2 i = 2

0.1 i = 3

The policy is that if the inventory stock at the end of day n is ≤1, then we order enough to bring it to S = 5.

Thus, S = {0, 1, 2, 3, 4, 5}.

Xn+1 =

{
(Xn −Dn+1)+, Xn > 1

(5−Dn+1)+, Xn ≤ 1
=⇒ P =


0 0 0.1 0.2 0.4 0.3
0 0 0.1 0.2 0.4 0.3
0.3 0.4 0.3 0 0 0
0.1 0.2 0.4 0.3 0 0
0 0.1 0.2 0.4 0.3 0
0 0 0.1 0.2 0.4 0.3


Preview: P[X3 = j|X0 = i] = [P 3]i,j , the (i, j)th entry of the 3rd power of matrix P . Remark: In R, use
package “expm” and function P % ∧% n

2.1 Multiple Transition Probabilities

By the Law of Total Probability, if {Bk} is a partition of Ω,

P[A] =
∑
k

P[A|Bk]P[Bk] → P[A|C] =
∑
k

P[A|Bk, C︸ ︷︷ ︸
Bk∩C

] · P[Bk|C]

Property 1:

P[Xn+m = j|Xn = i,Xn−1 = in−1, ....] = P[Xn+m = j|Xn = i]

= P[Xm = j|X0 = i]

Proof. Induction in m. For m = 1, this is the markov chain property. Now, suppose they are true for m.

P[Xn+m+1 = j︸ ︷︷ ︸
A

|Xn = i, ...︸ ︷︷ ︸
C

] =
∑
k

P[Xn+m+i = j|Xn+1 = k,Xn = i] · P[Xn+1 = k|Xn = i,Xn−1 = ...]

=
∑
k

P[Xn+m+1 = j|Xn+1 = k,Xn = i] · P[Xn+1 = k|Xn = i]

= P[Xn+m+i = j|Xn = i]

=
∑

P[Xm = j|X0 = k]P[X1 = k|X0 = i]

=
∑

P[Xm+1 = j|X1 = k] · P[X1 = k|X0 = i]

= P[Xm+1 = j|X0 = i]

■

We denote
p(m)(i, j) := P[Xm = j|X0 = i]
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Theorem. [Chapman-Kolmoguvov Equations]

P[Xn+m = j|X0 = i] =
∑
k

P[Xm = k|X0 = ki] · P[Xn+m = j|Xm = k]︸ ︷︷ ︸
P[Xn=j|X0=k]

p(m+n)(i, j) =
∑
k

p(m)(i, k) · p(n)(k, j) = P
(n+m)
i,j

Example. A gambler need N dollars but has only i dollars. He plays games that gives him 1 dollar with
probability p and loose 1 dollar with proability q, and p+ q = 1. When his fortune is either N or 0, he stops.
Now, suppose N = 4, p = 0.4, and he started with X0 = 1. What is the probability the gambler is still
playing after 20 games?

P[X20 /∈ {0, 4}|X0 = 1] = 1− P[X20 = 4|X0 = 1]− P[X20 = 0|X0 = 1] = 1− [P 20]1,4 − [P 20]1,0

Now, we can also get P [Xn = j] given P and α = [P[X0 = 1], ...,P[X0 = N ]] simply using the total law of
probability, where

P[Xn = j] =
∑
i

P[Xn = j|X0 = i]P[X0 = i]

=
∑
i

Pn
i,jαi =⇒ P[Xn = j] = [αPn]j

Thus, for n1 < ... < nk,

P[Xn1
= i1, ..., Xnk

= ik] = [αPn1 ]i1 [P
n2−n−1]i1,i2 · · · [Pnk−nk−1 ]ik−1,ik

Example. Suppose we are trying to calculate P[X9 = 1|X1 = 3, X4 = 1, X7 = 2], the long way is

P[X1 = 3, X4 = 1, X7 = 2, X9 = 1]

P[X1 = 3, x4 = 1, X7 = 2]
=

[αP ]3[P
3]3,1[P

3]1,2, [P
2]2,1

[]αP ]3, [P 3]3,1[P 3]1,2
= [P 2]2,1

But notice the memoryless property so we simply have [P 2]2,1

2.2 Long Run Behavior of Markov Chain

When does πj := limn→∞ P[Xn = j] exist? Does it depend on the initial probabilities α? Now, we know
that this problem is equivalent to finding if π = limn→∞ αPn exists.

Proposition. limn→∞ P(Xn = j) = πj if and only if Pn
i,j = P[Xn = j|X0 = i] → πj .

The vector π = [π1, ..., πN ] is called the limiting distribution or ergodic distribution.

Theorem. When there exists lim∞ P(Xn = j = πj) for all j, we have πP = π

Proof.
π = lim

n→∞
αPn = lim

n→∞
αPn+1 = lim

n→∞
αPnP = πP

■

Thus, π is a left eigenvector of the matrix P corresponding to eigenvalue 1 for the first expression.

Definition. A probability vector π satisfying πP = π is called a stationary, equilibrium, or invariant
probability distribution of the Markov Chain.

Theorem. The limiting distribution pi = limn→∞ αPn is a stationary distribution πP = π.

If the initial distribution α is a stationary distribution q, then [P[Xn = 1], ...,P[Xn = N ]] = q ∀ n.
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Proof. [P[Xn = 1], ...,P[Xn = N ]] = αPn = qPn = (qP )Pn−1 = qPn−1 = ... = qP 0 = qIn = q ■

Claim: 1 is always an eigenvalue of P or PT since P [1 · · · 1]T = [1 · · · 1] by definition of stochastic matrix
where each row sums to 1.

Suppse Pv = λv. Then, λ ≤ 1, and with |v − i| = maxj |vj |

ith entry → |λ||vi| =

∣∣∣∣∣∣
N∑
j=1

p(i, j)vj

∣∣∣∣∣∣ ≤
N∑
j=1

|p(i, j)vj | =
N∑
j=1

p(i, j)|vj | ≤
N∑
j=1

p(i, j)|vi|

|λ||vi| ≤ |vi| → |λ| ≤ 1.

2.3 Existence of Limit

So, when does π = limn→∞αPn exist?

Method 1

We can exploit the eigen-decomposition of P . If P = QΛQ−1, then P 2 = QΛ2Q−1. So, The limit is

Q

limn→∞ λn
1 0 0

0
. . . 0

0 0 limn→∞ λn
N

Q−1 =⇒ ∃ if |λi| ≤ 1,which holds

For limn→∞ αPn to be some π regardless of α, we need the eigenvalue λ = 1 to be simple. Then, λ =
1, |λj | < 1 ∀j ̸= 1.

Method 2

A simpler criterion is to check if all entries of Pm are positive for some m. This type of matrix is called
regular.

In summary, qi = limn→∞ P[Xn = i] exists regardless of the initial distribution α. The stationary distribution
πP = π where P is transition matirx. A limiting distribution is stationary. Sufficent condition for existence
of q and uniqueness if Pm has only positive entries, ∃m = 1, 2, ... Another ssufficient condition is that P has
eigendecomposition, λ = 1 is a simple eigenvalue, with a eigenvector v having all entries non-negative.

2.4 Recurrent and Transient States

Definition. A state is accesible from i if Pm
i,j > 0 for some m ≥ 0. We then say i, j communicate if

i → j and j → i are both possibe and write it as i ↔ j.

Claim: i ↔ j is a equivalence relation:

• Reflexive: i ↔ i

• Symmetric: i ↔ j =⇒ j ↔ i

• Associative: i ↔ j, j ↔ k =⇒ i ↔ k

Definition. An irreducible chain is where all states communicate with each other. In other words, there
exists only one communication class.

Definition. A state i is recurrent if fi := P[back to i|X0 = i] = 1. Otherwise, we say i is transient.

Theorem. The state of a communication class are either all recurrent or all transient. Criteria for
recurrence and transience
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1. State i is recurrent iff
∑∞

n=0 P
n
i,i = ∞.

2. State i is transient iff
∑∞

n=i P
n
i,i < ∞

Simply, P[N(i) = ∞|X0 = i] = 1 =⇒ E[N(i)|X0 = i] = ∞

Proof. Suppose i ↔ j is current, and show that j is recurrent. In other words, prove
∑∞

n=0 p
n
ii = ∞ =⇒∑∞

n=0 p
n
jj = ∞. Note that i ↔ j =⇒ P r

i,j > 0, Pm
j,i > 0. Now,

P r+k+m
j,j =

∑
l,l′

P r
j,lP

k
l,l′P

m
l′,j ≥ Pm

j,iP
k
i,iP

r
i,j

Then,
∞∑
k=0

≥
∞∑
k=0

Pm
j,iP

k
i,iP

r
i,j = Pm

j,iP
r
i,j

n∑
k=0

P k
i,i = ∞ =⇒

∞∑
n=0

Pn
j,j = ∞

■

Definition. A class is recurrent if at least one of its states is recurrent.

Implications:

• An irreducible (all states communicate) finite chain is recurrent.

• A finite chain has at least one recurrent class.

• A recurrent communication class C is closed if ∀i ∈ C,∀j /∈ C, pi,j = 0

• A finite closed communication class must be recurrent.

2.5 Canonical Decomposition of Transition Matrix

Check picture on board

2.6 Transience Continued...

Proposition. The stationary distribution of a finite irreducible chain always exists and is unique.

Remark: The limiting distribution does not necessarily exist.

2.7 First Passage Time

Let Ti = min{n > 0;Xn = i}, the earliest occurance of state i. Also let Nn(i) = number of visited of state i
up to time n

Theorem. Consider an irreducible, recurrent chain not necessarily finite. Then,

1.
Nn(i)

n
−−−−→
n→∞

1

E[Ti|X0 = i]

2.
1

N

n∑
k=1

P k
l,i −−−−→

n→∞

1

E[Ti|X0 = i]

3. πi :=
1

E[Ti|X0=i] is the unique stationary distribution
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Proof. (1). Now, let τi(k) be the time of the k-th visit=
∑k

j=1 T
(j)
i . Then by the strong law of large numbers,

lim
k→∞

τi(k)

k
= E[T (2)

i ] = E[Ti|X0 = i]

Also notice that

Nn(i) =

n∑
k=0

I[Xk=i] = max{k; τi(k) ≤ n} = number of {k; τi(k) ≤ n} = N

Then,

τi(Nn(i)) ≤ n ≤ τi(Nn(i) + 1) =⇒ τi(Nn(i))

Nn(i)
≤ n

Nn(i)
≤ τi(Nn(i) + 1)

Nn(i) + 1
· Nn(i) + 1

Nn(i)

Which means that as Nn(i) → ∞,

τi(Nn(i))

Nn(i)
= E[Ti|X0 = i],

τi(Nn(i) + 1)

Nn(i) + 1
· Nn(i) + 1

Nn(i)
= E[Ti|X0 = i] · 1

Thus, by squeezing, limn→∞
n

Nn(i)
= E[Ti|X0 = i] ■

Proof. (2). Let m := 1
E[Ti|X0=i]

lim
n→∞

E
[
Nn(i)

n
|X0 = l

]
= E

[
lim
n→∞

Nn(i)

n
|X0 = l

]
= E[m|X0 = i] = m

Then,

lim
n→∞

1

n
E

[
n∑

k=0

I[Xk=i]|X0 = l

]
= lim

n→∞

1

N

n∑
i=1

E[I[Xk=i]|X0 = l] = lim
n→∞

1

n

n∑
k=0

P
(k)
l,i

■

Proof. (3).

lim
n→∞

1

n

n∑
k=1

P
(k)
l,i = mi =⇒ 1

n

m∑
k=1

P
k
1,1 . . . P k

1,N
...

. . .
...

P k
N,1 . . . P k

N,N

 n→∞−−−−→

m1 . . . mN

...
. . .

...
m1 . . . mN


... As a result, m1 . . . mN

...
. . .

...
m1 . . . mN

 =

m1 . . . mN

...
. . .

...
m1 . . . mN

P =⇒ π = πP, π := [m1, ...,mn]

■

Corollary. Any irreducible and finite chine has a unique stationary distribution.

Note that if Pm
i,j > 0∀i, j∃m =⇒ stationary distribution exists

Theorem. Addition to theorem above:

lim
n→∞

E[Nn(i)]

n
=

1

E[Ti|X0 = i]

Theorem. For a finite irreducible chain (thus recurrent), The stationary distribution π exists, is unique,
and is given by

πi =
1

E[Ti|X0 = i]
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Proof. First, show that πP = π.

Then, show
∑N

i=1 πi = 1, π ≥ 0. For πP = π, start with the theorem so that... ■

Theorem. For an irreducible, recurrent (not necessarily finite) chain that has a stationary distribution π,

E[Ti|X0 = i] = πi

Proof. Use theorem 1 with initial distribution α = π to show that E[Nn(i)]
n = πi∀n. So, πi =

1
E[Ti|X0=i] ■

Example. A finite irreducible chain has a unique stationary distribution, that is not necessarily a limiting
distribution.

(Consider an odd even sequence.)

2.8 Periodicity

Definition. The period of state i is the largest integer that divides all possible return times n,

d(i) = gcd(n > 0;Pn
ii > 0)

If d(i) = 1, we say that i is aperiodic. d(i) = ∞ if Pii = 0∀n.

Theorem. All states in the same communication class have the same period:

i ↔ j =⇒ d(i) = d(j)

Proof. i ↔ j =⇒ d(i) ≤ d(j): Let n be a possible returning time to j, Pn
j,j > 0. If P r

i,j > 0, P s
j,i > 0,

d(i)|r + s because P r+s
i,i > 0.

Also, Pn
j,j > 0 =⇒ d(i)|r + s+ n since Pn+r+s

i,i > 0.

Together, it is obvious that d(i) divides (n+ r + s)− (r + s) = n =⇒ d(i) ≤ d(j).

Finally, we use the same argument to get d(j) ≤ d(i) ■

Theorem. [Eryodic Theorem] An aperiodic (d(i) = 1) finite irreducible chain =⇒ limiting distribution
exists =⇒ ∃! stationary distribution πP = π, with

lim
n→∞

Pn
i,j = πj∀i, j

2.9 [TBD]

Suppose the chain has transient and recurrent states. We know the chain visits a transient state finite many
times N(i) before it is absorbed by one of the recurrent classes.

In general, we want to find E[N(i)|X0 = i] and P[Xn ∈ Rj |X0 = i] for some recurrent class Rj

Given the canonical form of the matrix P , then for transient states i, j ∈ T ,

N(j) = number of visits of state j =

∞∑
n=1

I[Xn=j] and E[N(j)|X0 = i] = (I −Q)−1
i,j
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Proof. Denote Ei[·] = E[·|X0 = i]. Then,

Ei[N(j)] = Ei

[ ∞∑
n=0

I[Xn=j]

]
=

∞∑
n=0

P[Xn = j|X0 = i] =

∞∑
n=0

[Pn]i,j =

[ ∞∑
n=0

Pn

]
i,j

■

For Q being the top-left non-zero portion of the canonical representation, then for i, j ∈ T ,[ ∞∑
n=0

Pn

]
=

[ ∞∑
n=0

Qn

]
= (I −Q)−1

i,j

The number of steps before visits to recurrent classes can is essentially the sum
∑n

i=1 N(i).

Corollary. Let N be the number of steps before the chain enters one of the recurrent classes. Then for
i ∈ J ,

E[N |X0 = i] =
∑
j

Mi,j , where M = (I −Q)−1

Corollary. Suppose |Ri| = 1. i.e., all recurrent states consist of only one element. Then, for i ∈ T , j
recurrent, S being the part of canonical matrix to the right of Q,

α(i, j) = P(Xn = j eventually |X0 = j) =
[
(I −Q)−1S

]
i,j

= P [∪∞
n=0{Xn = j}|X0 = i] = lim

n→∞
P[Xn = j|X0 = i], with {Xn = j} ⊆ {Xn+1 = j}

Connection to Irreducible Chains If i, j are recurrent, then

E[steps from i → j|X0 = i]

Another approach we can take is to condition on the outcome of the first move.

P(A|X0 = i) =
∑
j∈S

P[A|X1 = j,X0 = i]P[X1 = j|X0 = i] =
∑
j∈S

P[A|X1 = j]Pi,j

E[Y |X0 = i] =
∑
j∈S

E[Y |X1 = j]Pi,j

Looking back at the previous theorem: A finite irreducible, and aperiodic chain has a limiting distribution
limn→∞ P[Xn = i] = πi

Proof. Consider another chain Y independent of X and starting in the stationary distribution π.

There exists a time T such that XT = YT . Then

P[Xn = i] = P[Xn = i, T ≤ n] + P[Xn = i, T > n]

= P[Yn = i, T ≤ n] + P[Xn = i, T > n]

= P[Yn = i]− P[Yn = i, T > n] + P[Xn = i, T > n]

= πi − P[Yn = i, T > n]︸ ︷︷ ︸
≤P[T>0]→0

+P[Xn = i, T > n]︸ ︷︷ ︸
≤P[T>n]→0

x→∞−−−−→ πi

■
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Theorem. Let S be irreducible, recurrent, and countable. If

E[Ti|X0 = i] < ∞, Ti = min{n > 0 : Xn = 1}

then a stationary distribution exists
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3 Poisson Process

Definition. Exponential distribution T ∼ exp(λ) is a positive continuous random variable with density
function

f(t) = λe−λt

Note that

P[T > t] = e−λt, E[T ] =
1

λ
, V ar[T ] =

1

λ2

This also posesses the memoryless property, where

P[T > t+ s|T > t] = P[T > s]

[Exponential Races] Let T1 ∼ exp(λ1), ..., Tn ∼ exp(λn) be independent, then the minimum time to finish
follows the distribution

P[min{T1, ..., Tn} > t] ∼ exp(λ+ · · ·+ λn)

Proof.

P[min{T1, ..., Tn} > t] = P[T1 > t, ..., Tn > t]

= P[T1 > t] · · ·P[Tn > t]

= e−λ1t · · · e−λnt = e−(λ1+...+λn)t

■

P[Ti smallest] = λi

λ1+...+λn

T1 ∧ ... ∧ TN and I are independent

Proof. It is sufficient for us to prove P[I = 1, T1 ∧ · · · ∧ Tn ≥ t] = λ1

λ1+···+λn
e−(λ1+...+λn)t. Here,

LHS = P[T1 ≥ t, T2 ≥ T1, ..., Tn ≥ T1]

=

∫ ∞

t

P[T1 ≥ t, T2 ≥ T1, ..., Tn ≥ T1|T1 = x1]λ1e
−λ1x1 dx1

=

∫ ∞

t

P[T2 ≥ x1, ..., Tn ≥ x1]λ1e
−λ1x1 dx1

=

∫ ∞

t

P[T2 ≥ x1] · · ·P[Tn ≥ x1]λ1e
−λ1x1 dx1

=

∫ ∞

t

e−λ2+...+λnλ1e
−λ1x1 dx1

=
λ1

λ1 + ...+ λn
e−(λ1+...+λn)t

■

Sum of exponentials. Let τ1, .., τn be independent dsitrbution following exp(λ). Then,

Tn = τ1 + ...+ τn ∼ Gamma(n, λ) ∼ fTn(t) =
λne−λttn−1

(n− 1)!
, t > 0
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Poisson Distribution. X ∼ Pois(λ) if X is a discrete random variable taking values on {0, 1, ...}
according to the PMF

px(k) = P[X = k] = e−λλ
k

k!

Note that this follows the property that

E[X] = V ar(X) = λ

The sum of poisson distribution where Xi ∼ Pois(λi) is given by

X1 + ...+Xn ∼ Pois(λ1 + ...+ λn)

Poisson process counts Nt, the number of jumps up to time t. In application, Nt counts the number of events
happening up to time t.

Properties:

1. N0 = 0

2. Nt −Ns ∼ Pois(λ(t− s)), for some fixed λ called the rate of N .

3. If t1 < t2 < ... < tn, then N(t2)−N(t1), ..., N(tn)−N(tn−1) are independent.

Example. If λ = 2, then

P[N3 = 0, N5 = 1, N8 = 5] = P[N3 = 0, N5 −N3 = 1, N8 −N5 = 4]

= P[N3 = 0]P[N5 −N3 = 1]P[N8 −N5 = 4]

= P[Pois(6) = 0] · P[Pois(4) = 1] · P[Pois(6) = 4]

=

(
e−6 6

0

0!

)(
e−4 4

1

1!

)(
e−6 6

4

4!

)

Example. Let λ = 2. Find E[N1N3]. Note that N1 and N3 are not independent, but N1 and N3 are.
Thus,

E[N1N3] = E[N1(N1 +N3 −N1)]

= E[N2
1 ] + E[N1(N3 −N1)]

= V ar(N1) + E[N1]
2 + E[N1]E[N3 −N1]

= 2 + 22 + 2× 4 = 14

Similarly, we can rewrite

E[N1N2N4] = E[N1((N2 −N1) +N1)((N4 −N2) + (N2 −N1) +N1)]

For Tj = min{t : Nt ≥ j}, let T1, T2, ... be arrival times of jump or events.

Then,τ1, τ2, ... be the interarrival times, where τ1 = T1, τj = Tj − Tj−1, j = 2, 3, ....

Theorem. τ1, ..., are exponential with rate λ and independent.

To verify, notice that P[τ1 > t] = P[Nt = 0] = e−λt =⇒ τ1 ∼ exp(λ). Then, P[τ2 > s|τ1 = t] =
P[Nt+s −Nt = 0] = e−λs.

Application: we can construct or simulate a Poisson process by generating τ1, .., τn ∼ exp(λ).
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Generalizations. For nonhomogeneous poison processes, the likelihood of an event happening near
time t may depend on time t. We want

P[Nt+∆ −Nt = 1] = λ(t)∆ + o(∆), where
o(∆)

∆
−−−→
D→0

0

For a poisson process, P[Nt+∆ −Nt = 1] = eλ∆λ∆ = (1− λ∆+ (λ∆)2

2! − ...)λ∆ = λ∆+ o(∆).

Definition. {Nt}t≥0 is a nonhomogeneous poisson process with rate function λ(t) : [0,∞) → [0,∞)
if

• N0 = 0

• For s < t, Nt −Ns ∼ Pois
(∫ t

s
λ(u) du

)
.

• If t1 < t2 < ... < tn, then N(t2)−N(t1), ..., N(tn)−N(tn−1) are independent.

Exercise: P[Nt+∆ −Nt = 1] = λ(t)∆ + θ(∆)

To simulate this, start with a regular Poisson Process with rate λ = 1, then for homogenenous {Nh
t }t≥0,

T (t) =

∫ t

0

λ(u) du, T ′(t) = λ(t)

Then Nt = Nh
T (t) is a nonhomogeneous Poisson Process with rate λ(t). Then for s < t,

E[Nt −Ns] = E[Nh
T (t) −Nh

T (s)] = T (t)− T (s) =

∫ t

s

λ(u) du =⇒ Nt −Ns ∼ Pois(T (t)− T (s))

Example. Student arrive at a cafeteria according to a nonhomogeneous poisson process with

λ(t) =


100 + 100t, 0 ≤ t ≤ 1

200, 1 ≤ t ≤ 3

500− 100t, 3 ≤ t ≤ 4

If t = 0 is 11:00AM, find the probability that at least 400 students arrive between 11:30 and 1:30.

Compound Poisson Process. Y1, Y2, ... are i.i.d. with same distribution, independent of the times of
jumps. Let NT be the number of jumps up to time t ∼ Pois(λ).

Xt =


0, Nt = 0

Y1, Nt = 1

Y1 + ...+ Yk, Nt = k

=

Nt∑
i=1

Yi

Example. Cars are arriving at McDonalds between 12:00 and 1:00 according to a poisson process with a
rate of 2 cars per minute. Suppose we want to determine the number of customers that McDonalds serves
at any given time t.

Yi =



1, p = 0.1

2, p = 0.3

3, p = 0.3

4 p = 0.2

5 p = 0.1

=⇒ E(X1) = E

(
N1∑
i=1

Yi

)
= E(N1)E(Y1)
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V ar(X1) = V ar

(
Nt∑
i=1

Yi

)
= E

(
V ar

(
NT∑
i=1

Yt|Nt

))
+ V ar

(
E

(
Nt∑
i=1

Yi|Nt

))

= E

(
Nt∑
i=1

V ar(Yi)

)
+ V ar

(
N∑
i=1

E[Yi]

)
= E(NtV ar(Yi)) + V ar(NtE(Yi))

= V ar(Yi)E(Nt) + (E[Yi])
2V ar(Nt)

= λtV ar(Y1) + λt(E[Y1])
2

= λtE[Y 2
1 ] = 1164

Note that an important formual here is
E[Xt] = λtE[Y1]

Thinning of Poisson Process. We classifcy each event into one of k different types. The classification
are independently done, and independent with respect to the time it happens at probability pi for type i.
Then, Ni(t) is the number of events of type i up to time t.

Theorem.
Ni ∼ Pois(λpi), all i.i.d.

Example. Ellen catches fish according to poisson process with a rate of 2 fish per hour. p = 0.4 of fish
are salmon and the rest of trouts. What is the probability she catches exactly 1 salmon and 2 trouts in 2.5
hours.

P(NS(2.5) = 1, NT (2.5) = 2) = P(NS(2.5 = 1)) · P(NT (2.5 = 2)) = e−2×0.4×2.5 2× 0.4× 2.5

1
× ... =

Rewording for thinning or possion process: Suppose we have poisson process with arrival rate λ and we
thinned the arrival times so that Ti is kept with probability p and Ti is erased with probability 1− p. The
counting process of the remaining arrival times is also a poisson process with rate px

Then, N1(t), N2(t), ..., Nj(t) are each a poisson process with respective rate λp1, λp2, ..., λpn and they are
independent of each other.

Example. Let probability of boy being born be 0.519. Assume births occur according to a poisson process
with rate 2 births/hhour. On an 8 hour shift, what is the expectation and standard deviation on the number
of female births?

Nfemale(t) ∼ PP (2× (1− 0.519)), Nfemale(8) ∼ Pois(8× 2× (1− 0.519)). V ar(Nf (8)) = 2.774.

Example. From the example above, find the probability that only girls were born between 2-5 PM.

P(Nfemale(t) > 0, Nmale(3) = 0) = P(Nfemale(t) > 0)P(Nmale(3) = 0) = ... = 0.042

Example. Assume 5 babies were born in 1 hour. Find the probability that two are boys.

5C2× (0.519)2(1− 0.519)3

[Generalized Thinning Method] Consider a N ∼ PP (λ). Suppose T1, ...Tn are arrival times. Suppose
we keep Ti with probability p(Ti) or erase Ti with probability 1− pi. If we get Ñt be the number of events
by time t, then Ñt is a nonhomogeneous poisson process with rate function λp(t), t ≥ 0.

The intuition here is that
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P[Ñt+h − Ñ = 1] = P[Nt+h = 1 and keep it] + o(h2)

= P[Nt+h −Nt = 1]P[keep] + o(h2)

= λp(t)h+ o(h2)

Example. Calls arrive in the call center according to Poisson process with rate of S per hour. Each call
can last a random time with a uniform distribution over (0, 1

6 ). What is the probability of having a call still
in progress at time t = 2 hours, assuming no calls active at time 0?
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4 Continuous Time Markov Chains

In continuous time, we can define markov chains as

P (Xs+t = j|Xs = i, ...,Xsm = im) = P (Xs+t = j|Xs = i)

= P (Xt = j|X0 = i)

written as {Xt}t≥0.

Definition. The transition probability is given by pi,j(t) := P (Xt = j|X0 = i).

P (t) =

p1,1(t) . . . p1,N (t)
...

. . .
...

pN,1(t) . . . pN,N (t)


Example. {Nt}t≥0 is a homogenenous poisson process with rate λ is a CTMC with pi,j(t) = eλt (λt)

j−i

(j−i)!

Proposition. Suppose {Nt} is a poisson process with rate λ and {Yn}n=0,1... is an independent discrete
time MC with transition probabilities pi,j = P (Y1 = 1 | Y0 = 1). Let

Xt = YNt


Y0, 0 ≤ t < T1

Y1 T1 ≤ t < T2

...

Then, {Xt}t≥0 is a CTMC.

Proof.

P[Xt+s = j |Xs = i] =
P[Xt+s = j,Xs = i]

P(Xs = i)
=

P[YNt+s = j, YNs = i]

P(Xs = i)

Here,

P(YNs+t = j, YNs = i) =
∑
l,m

P[YNt+s︸ ︷︷ ︸
=Yl+m

= j, Yl = i |Ns = l, Nt+s −Ns = m]P(Ns = l)e−λt (λt)
m

m!

=
∑
l,m

P[Yl+m, Yl = i]P[Ns = l]e−λt (λt)
m

m!

=
∑
l,m

Pm
i,jP(Yl = i)P(Ns = l)e−λt (λt)

m

m!

=
∑
l,m

Pm
i,jP(Xs = i,Ns = l)e−λt (λt)

m

m!

=
∑
m

Pm
i,je

−λt (λt)
m

m!

∑
l

P(Xs = i,Ns = l)︸ ︷︷ ︸
P(Xs=i)

Then,

P (t) =

∞∑
m=0

eλt
(λt)m

m!
[]

■
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Properties:

• e0 = I

• ecI = ecI

• eA =
∑∞

m=0
Am

m!

• eA × eB = eA+B if AB = BA

• eUAU−1

= UeAU−1

Following the proof, we have

∞∑
m=0

eλt
(λt)m

m!
Pm = e−λt

∞∑
m=0

(λt)mPm

m!
= e−λteλtP = eλtIeλtP = eλtIeλtP = e(P−I)λt

Here, Q := P − I is called the infinitesimmal generator of X.

Preview: Any CTMC is of the form YNt , where {Yn} is DTMC and {Nt}t≥0 is a poisson process.

Xt =


Y0, 0 ≤ t ≤ T1 ∼ exp(λy0

)

Y1, T1 ≤ t < T1 + exp(λy1
) := T2

...

Claim: {Xt}t≥0 is a CTMC with transition matrix P (t) = etQ, where Q is

Qi,j =

{
−λi, i = j

λir(i, j), i ̸= j

With eigendecomposition Q = UΛU−1,
etQ = UetΛU−1

4.1 Stationary Distribution

Definition. α is called a stationary distribution if αt = α∀t or αP (t) = α∀t.

Proposition. π is a stationary distribution ⇐⇒ πQ = 0

Proof. ⇐=: Suppose πQ = 0. πP (t) = πetQ =⇒ (πP (t))′ = πQetQ = 0. Thus πP (t) is a constant
= π′ =⇒ πP (0) = π. ■

Proposition. Limiting Distribution is a stationary distribution.
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