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1 Groups

Definition. G is a non-empty set with a binary associate operation ∗ is a group if

• There is an identity element e, a ∗ e = e ∗ a = a∀a ∈ G

• Every element has an inverse. ∀a ∈ G,∃a−1 ∈ Gsuchthata ∗ a−1 = a−1 ∗ a = e

Note: Identity and inverse elements are unique.

If n ≥ 1, an = a ∗ a ∗ ... ∗ a for n times. Similar follows for a−n. Also a0 = e.

Definition. G is called abelian if ab = ba∀a, b ∈ G.

Example. Non Abelian Group: GL(n,R) of n × n matrices with real entries with matrix
multiplication.

A non-empty subset H ⊆ G is a subgroup if it is itself a group with the induced operation.

• e ∈ H

• a ∈ H =⇒ a−1 ∈ H

• a, b ∈ H =⇒ ab ∈ H

Fact: A non-empty subset H is a subgroup iff a, b ∈ H =⇒ ab−1 ∈ H .

Notation: H ≤ G.

If X ⊂ G is a subset, the subgroup generated by X , < X >:=
⋂
H≤G,X⊆H H

If X = a,< a >= {an
∣∣ n ∈ Z}

1.1 Cosets

Definition. Let H ≤ G, g ∈ G. The right coset of H in G generated by g is : Hg = {hg
∣∣ h ∈

H}. Left cosets are defined similarly, where gH = {gh
∣∣ h ∈ H}.

Facts: Hg1 = Hg2 ⇐⇒ H = Hg2g
−1
1 ⇐⇒ g2g

−1
1 ∈ H . Similarly, g1H = g2G ⇐⇒

g−1
1 g2H = H ⇐⇒ g−1

1 g2 ∈ H .

Corollary. If Hg1 ̸= Hg2, then Hg1 ∩Hg2 = ∅

Proof. Let a = Hg1 ∩Hg2 =⇒ a = h1g2 = h2g2. Then h−1
2 h1 = g2g

−1
1 =⇒ g2g

−1
1 ∈ H =⇒

Hg1 = Hg2. ■

Similarly, if g1H ̸= g2H, then g1H ∩ g2H = ∅

Example. A right coset is not necessarily a left coset. One example would be Sn the group of
permutation of 1, ..., n.

Definition. An operation f is injective, or one-to-one on a set S if ∀s1, s2 ∈ S, f(s1) =
f(s2) =⇒ s1 = s2.

Definition. An operation f is surjective, or onto on for f : X −→ Y if im(f) = Y . In other
words, ∀y ∈ Y,∃x ∈ X such that f(x) = y.

IfX is a set and SX is the set of bijections f : X → X , then there is a group under composition
of function, namely the group of permutations of X .
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Fact: There is a bijection between the set of distinct left cosets of H and distinct right cosets of
H : aH ←→ Ha−1.

Proof. aH = bH ⇐⇒ a−1b ∈ H ⇐⇒ (a−1b)−1 ∈ H ⇐⇒ b−1a ∈ H ⇐⇒ Ha−1 = Hb−1 ■

Definition. The index if H in G, [G : H] is the number of distinct right (left) cosets of H in G.

If |G| <∞, then |G| = [G : H] · |H|. (|Hg| = |H|). In particular, |H|
∣∣ |G|

If K ≤ H ≤ G and if [G : H], [H : K] <∞, then [G : K] <∞ and [G : K] = [H : K][G : H].

Exercise: Prove this. aiH, i ∈ I, bjK, bj ∈ H, j ∈ J =⇒ aibjK give all the cosets of K in G.
Hint: (Was in homework last semester)

Definition. For g ∈ G, g has finite order if ∃n ≥ 1 such that gn = e, and ord(g) is the smallest
such n. So ord(g) means that< g > is a subgroup of order n. And if |G| <∞, then ord(g)

∣∣ |G|.
Definition. G is cyclic if ∃g ∈ G such that G =< g >.

If |G| = p, p prime, then G is cyclic: If G ̸= {e}, then e ̸= g ∈ G, then < g >≤ G, so
1 ̸= | < g > |

∣∣ p =⇒ | < g > | = p.

If G is cyclic, then every subgroup H of G is cyclic

Proof. H ≤ G, and let r be the minimum positive integer such that gr ∈ H , then H =< gr >,
so for gm ∈ H,m = rq + r0. ■

Proposition. If G is a cyclic group of order n, then for any divies d
∣∣ n, there is a unique

subgroup of order d.

Remark: |A4| = 12 has no subgroup of order 6.

1.2 Normal Subgroups

Definition. Let H ≤ G is normal if ∀g ∈ G, gHg−1 ⊆ H . Note that gHg−1 = {ghg−1|h ∈
H} ≤ G.

Proof. ghg−1(gh′g−1)−1 ∈ gHg−1 ■

Example.

• Every subgroup of an abelian group is normal

• SL(n,R), real matrices with det=1, is a normal subgroup of GL(n,R), invertible matri-
ces.

•

Obviously for A ∈ GL(n,R), B ∈ SL(n,R), det(ABA−1) = det(A)det(B)det(A−1) = 1

We denote H normal in G as H ⊴ G.

If H ≤ G, then the following are equivalent.

1. H ⊴ G

2. gHg−1 = H ∀ g ∈ G
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3. gH = Hg ∀ g ∈ G

4. Every right coset of H is a left coset

5. Every left coset of H is a right coset

Proof of 4 implies 3: Suppose Hg = aH for some a. But then g ∈ Hg = aH, and g ∈ gH . So
aH = gH =⇒ Hg = gH .

Proof of 1 implies 2: gHg−1 ⊆ H ∀g ∈ G, so (g−1H(g−1))−1 ⊆ H =⇒ g−1Hg ⊆ H . Multiply
from left and right to cancel, so H =⊆ gHg−1. So gHg−1 = H

Corollary. Any subgroup of index 2 in any group G is normal.

Proof. [G : H] = 2 =⇒ two distinct left cosets, H, aH where a /∈ H. Similarly, H and Ha are
distinct right cosets. This H ∩ aH = ∅, H ∩Ha = ∅, so by 4, H is normal. ■

1.3 Quotient (Factor) Groups

If N ⊴ G, then the set of cosets of N in G, G/N , form a group under (aN)(bN) = abN . We
need to check that

• Well-defined: aN = a′N and bN = b′N =⇒ abN = a′b′N .

• Group properties easily follow from the group properties of G

So a−1a′, b−1b′ ∈ N . (add from notes)

Notation: This group is denoted as G/N .

Example. SL(n,R) ⊴ GL(n,R). Then GL(n,R)/SL(n,R) ←→ R − {0}, and A · SL(n,R) →
det(A)

1.4 Group Homomorphisms

Definition. Let G,G′ be a group. ϕ : G → G′ is a homomorphism if ϕ(ab) = ϕ(a)ϕ(b) for all
a, b ∈ G. f is an isomorphism if the homomorphism is injective and surjective.

Facts: If ϕ : G→ G′ is a homomorphism, then

• ϕ(eG) = eG′

• ϕ(a−1) = (ϕ(a))−1

• ker(ϕ) := {a ∈ G|ϕ(a) = eG′} ⊴ G

• im(ϕ) := {ϕ(a)|a ∈ G} ≤ G′

Proof. From video ■

Example. Let Zn be the group of integers mod n. Then any cylic group of order n is
isomorphic to Zn. In particular for G =< g >, we define ϕ : G→ Zn, ϕ(gi) = [i].
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1.5 Isomorphism Theorems

1st IsomorphismTheorem. If f : G→ G′ is a group homomorphism, then

G/ ker(f) ≃ im(f)

Proof. Define ϕ : G/ ker(f)→ im(f) by ϕ(a ker(f)) = f(a).

ϕ is well-defined and injective: a ker(f) = b ker(f) ⇐⇒ a−1b ∈ ker(f) ⇐⇒ f(a−1b) = e. So
f(a−1)f(b) = e =⇒ f(b) = f(a).

ϕ homomorphism: .ϕ(a ker(f)b ker(f)) = ϕ(ab ker(f)) since kernel is normal group and that is
f(ab). On the other side, ϕ(a ker(f))ϕ(b ker(f)) = f(a)f(b), so this is homomorphism since f
is homomorphism

ϕ surjective: If b ∈ im(f), then b = f(a) for some a. So ϕ(a ker(f)) = b. ■

Example. SL(n,R) ⊴ GL(n,R). Then GL(n,R)/SL(n,R) ≃ (R− {0}, ·)

Proof. f : GL(n,R) → R − {0}, A 7→ det(A). This is a group homomorphism, f is surjective,
ker(f) = SL(n,R) =⇒ GL(n,R)/SL(n,R) ≃ R− {0} ■

Remark: If H,K ≤ G,HK = {hk|h ∈ H, k ∈ K}. HK is not necessarily a subgroup of G. For
example, consider G = S3.

Fact: IfN ⊴ G andH ≤ G, thenHN ≤ G,HN = NH , andHN is the subgroup ofG generated
by H ∪N .

Proof. HN ≤ G : If a = h1n1, b = h2n2, then ab−1 = h1n1n
−1
2 h−1

2 = h1h
−1
2 h2n1n

−1
2 h−1

2 .
Clearly, n1n−1

2 ∈ N so h2n1n−1
2 h−1

2 ∈ N . Thus, ab−1 ∈ HN .

HN = NH : We need to first show HN ⊆ NH . Let hn ∈ HN =⇒ hnh−1 = n′ ∈ N =⇒
hn = n′h ∈ NH , so HN ⊆ NH. Similar for other direction.

Clearly, H,N ⊆ HN ≤ G. And for any K ≤ G, let H,N ⊆ K. Since K is a subgroup,
∀n ∈ N,h ∈ H,hn ∈ K. Thus HN ≤ K is the smallest subgroup. In particular, HN is the
subgroup generated by H ∪N .

■

2nd Isomorphism Theorem. Let H ≤ G,N ⊴ G. Then H ∩N ⊴ H and

H/H ∩N ≃ HN/N

Proof. If ϕ : H → HN/N is given by ϕ(h) = hN .

ker(ϕ) = {h ∈ H|hN = N} = H ∩N .

ϕ is surjective (so the im(ϕ) =range): hnN = hN = ϕ(h).

ϕ is homomorphism.

Together by the first isomorphism theorem, the result follows. ■
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3rd Isomorphism Theorem. Suppose K ≤ N ⊴ G and K ⊴ G. Then

N/K ⊴ G/K and (G/K)/(N/K) ≃ G/N

Proof. First part follows by definition.

Second part: Define ϕ : G/K → G/N , ϕ(gK) = gN and check well-defined, homomorphism,
ker(ϕ) = N/K, and ϕ surjective.

Well defined: gK = g′K =⇒ g−1g ∈ K =⇒ g−1g′ ∈ N =⇒ gN = g′N . Surjectivity is clear,
the rest is left as exercise. ■

4th Isomorphism Theorem. (Correspondence Theorem)

Let N ⊴ G, then ϕ : G → G/N, ϕ(g) = gN induces a 1-1 correspondence between subgroups
of G which contain N and subgroups of G/N .

• N ≤ H1 ≤ H2 ⇐⇒ H1/N ≤ H2/N , and [H2 : H1] = [H2/N : H1/N ].

• N ≤ H1 ⊴ H2 ⇐⇒ H1/N ⊴ H2/N , and in this case, H2/H1 ≃ (H2/N)/(H1/N).

1.6 Simple and Solvable Groups

Definition. A group G is called simple if it has no normal subgroup other than {e} and G.

Example. If G is finite and abelian, then G is simple iff G is cyclic of prime order. (proof later).

Example. Consider An, the alternating group of n elements. For a σ ∈ Sn, σ is a product of
transpositions, or cycles of length 2. We call σ odd or even if the number of transpositions is
odd or even. An ≤ Sn
Note that this is well-defined: Proved using determinant of matrices. σ matrix generated from
identity matrix using series of corresponding row swaps, which just alternates the sign of
determinants. Thus even/odd is defined by the number of swaps. In particlar, An defines the
set of all even permutations.

Also, An ←→ Bn, σ 7→ σ(1 2). [Sn : An] = 2 =⇒ An ⊴ Sn

Conclusion: An, n ≥ 5 is simple. For n = 2, A2 = {e}. For n = 3, A3 = {e, (1 2 3), (1 3 2)}.

For n = 4, |A4| = 12.σ1 = (1 2)(3 4), σ2 = (1 3)(2 4), σ3 = (1 4)(2 3). Here, {e, σ1, σ2, σ3} ≤ A4

Theorem. An is simple if n ≥ 5

Proof. (1)An, n ≥ 5 is generated by 3 cycles, and (2) Every 2 3-cycles are conjugate inAn: σ1, σ2
are 3-cycles, then ∃τ ∈ An : τσ1τ

−1 = σ2., and (3) every normal subgroup N ̸= {e} in An has
at least one 3-cycle. Together they prove the statement.

For (1), T = {(a b c)
∣∣ 1 ≤ a < b < c ≤ n} ⊂ An, then ⟨T ⟩ ⊂ An. If

σ = (a b)(c d) =


e, if {a, b} = {c, d}
(a c b)(a c d), if a, b, c, d all distinct
(a d b) if a = c

For (2), if σ1, σ2 are 3 cycles, are conjugate in Sn ■
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Theorem. Jordan-Holder Theorem. If G is any finite group, then there is a unique tower of
subgroups

{e} = N0 ⊴ N1 ⊴ · · · ⊴ Nk−1 ⊴ Nk = G

such that Ni/Ni−1 is simple.

Definition. A tower of subgroups, Gm ≤ Gm−1 ≤ · · · ≤ G1 ≤ G0 = G is normal if
Gi+1 ⊴ Gi, and it is abelian if Gi/Gi+1 is abelian, and solvable if there is an abelian tower
{e} = Gm ≤ Gm−1 ≤ · · · ≤ G1 ≤ G0 = G.

Example.

• Any abelian group is solvable.

• S3 is solvable, {e} ⊴ {e, σ1, σ2
1} ⊴ S3

• Sn, n ≥ 5 is not solvable

Proof. If N ⊴ Sn, then N ∩An ⊴ An. But An simple, so N ∩An = {e} or An.

If N ∩ An = An, then An ≤ N ≤ Sn =⇒ N = An or N = Sn due to [Sn : An] = 2. If
N ∩ An = {e} and N ̸= {e}, then if σ1, σ2 ̸= e, σ1, σ2 ∈ N , then σ1σ2 ∈ N since they are even,
so σ1σ2 = e.

But by parts 1 and 2 of previous theorem, N = An. Since N = {e}, N, or Sn =⇒ Sn, n ≥ 5 is
not solvable. ■

Definition. Let x, y ∈ G. The commutator of x, y := xyx−1y−1 = [x, y] Note that [x, y] =
e ⇐⇒ xy = yx, and [x, y]−1 = [y, x]. This gives us a notion of how far a group is from abelian.

Definition. G′, the commutator subgroup, is the subgroup generated by all the commutators
[x, y], where x, y ∈ G. G′ = {[x1, y1][x2, y2] · · · [xk, yk]

∣∣ xi, yi ∈ G}
Facts:

• G′ = {e} ⇐⇒ G is ableian

• G′ ⊴ G

• G/G′ is abelian

Proof. Insert gg−1 between the elements: g[xy]g−1 = gxg−1gyg−1gx−1g−1gy−1g−1 = [gxg−1, gyg−1] ∈
G′.

Similarly, g[x1, y1] · · · [xk, yk]g−1 = (g[x1, y1]g
−1) · · · (g[xkyk]g−1)

G/G′ abelian proof: Want abG′ = baG′. a−1b−1ab = [a−1, b−1] ∈ G′. So it is true. ■

Proposition. If N ⊴ G, then G/N is abelian ⇐⇒ G′ ≤ N

Proof. =⇒ : ∀a, b ∈ G,G/N abelian so a−1b−1N = b−1a−1N . Then aba−1b−1 ∈ N =⇒ [a, b] ∈
N =⇒ G′ ≤ N

⇐=: a−1b−1ab = [a−1, b−1] ∈ G′ ⊆ N =⇒ a−1b−1ab ∈ N ■
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Example. (Sn)
′ = An. Proof left as exercise

Let G(0) := G,G(1) = G′, ..., G(i) = (G(i−1))′. G(i+1) ⊴ G(i) and G(i+1)/G(i) is abelian.

Proposition. G is solvable iff G(m) = {e} for some m ≥ 1

Proof. ⇐=: {e} = G(m) ⊴ · · · ⊴ G(1) ⊴ G is an abelian tower.

=⇒ : If {e} = Gm ⊴ · · · ⊴ G1 ⊴ G0 = G is abelian, then G1 ⊴ G0, G0/G1 abelian =⇒ G′ ≤
G1, G2 ⊴ G1, G1/G2 abelian =⇒ (G1)

′ ≤ G2 implies together that G(2) ≤ G′
1 ≤ G2 =⇒

G(2) ≤ G2.

By induction, G(i) ≤ Gi∀i, G(m) ≤ Gm = {e}.

■

Proposition. If N ⊴ G, then N,G/N are solvable ⇐⇒ G is solvable.

proof: exercise, use derivative as one, use tower definition.

1.7 Group Actions

Definition. For a group G acting on set X , an action of G on X is a function α : G × X →
X, (g, x) 7→ g · x such that

• e · x = x, ∀x ∈ X .

• (g1g2) · x = g1 · (g2 · x), ∀x1, x2 ∈ X, g ∈ G

Note that ∀g ∈ X,ϕg : X → X is a permutation, x 7→ g · x.

ϕg is bijective, where g · x = g · x′ =⇒ g−1 · (g · x) = g−1 · (g · x′) =⇒ e · x = e · x′.

Also ∀x ∈ X,ϕ−1
g (g · x) = g · (g−1 · x) = x

So, ψ : G→ SX , the group of permutations of X with composition of functions and g 7→ ϕg .

Thus ψ is a homomorphism (not necessarily injective), since ψ(g1g2)(x) = (g1g2)x = g1(g2x) =
ψ(g1) ◦ ψ(g2)(x).

Example.

1. Trivial action. ∀g ∈ G, x ∈ X, g · x = x

2. Conjugation on elements of G. X = G, g · x = gxg−1

3. Conjugation on subgroups of G. Let X be set of subgroups of G, g ∈ G,H ∈ X . Then
g ·H = gHg−1 ≤ G, and a, b ∈ gHg−1. Then a = ghg−1, b = gh′g−1 =⇒ ab = g(hh′)g−1.

4. G acts on G by translation. X = G, g · x = gx.

Definition. Suppose G acts on X,x ∈ X . Then the stabilizer is defined as

Gx := {g ∈ G
∣∣ gx = x} ≤ G

Definition. We also define an orbit of X that forms a partition in x.

Ox = {gx
∣∣ g ∈ G} ⊆ X

Note: x ∼ y if y ∈ Ox, so y = gx for some g. Thus, any two orbits are either equal or disjoint.

9



From the examples above, the stabilizer and orbit is

1. Gx = G,Ox = {x}

2. Gx = {g ∈ G
∣∣ gx = xg}, Ox = {gxg−1

∣∣ g ∈ G}, the conjugacy class of x in G.

3. OH = all subgroups conjugate to H , GH = {g ∈ G
∣∣ gHg−1 = H}︸ ︷︷ ︸
normalizer

≤ H

4. Gx = {g ∈ G
∣∣ gx = x} = {e}, Ox = {gx

∣∣ g ∈ G} = G

Definition. As mentioned above, the normalizer of H in G is the largest subgroup of G in
which H is normal.

H ⊴ NG(H) = {g ∈ G
∣∣ gH = Hg} ≤ G

Definition. An action is transitive if there is only one orbit, Ox = X

Theorem. [Orbit Stabilizer Theorem]. Let X be a G-set, then ∀x ∈ X ,

|Ox| = [G : Gx]

Proof. Define ψ : Ox → set of left cosets of Gx, gx 7→ gGx.

Well-defined (since we can’t make sure gx = gx′ =⇒ x = x): gx = g′x ⇐⇒ x = g−1g′x ⇐⇒
g−1g′ ∈ G ⇐⇒ gGx = g′Gx.

Surjective: clear ■

Definition. For group G, the center of G, Z(G), is defined as

Z(G) = {g ∈ G
∣∣ gg′ = g′g∀g′ ∈ G}

Fact:

• Z(G) = G ⇐⇒ G abelian

• Z(G) ⊴ G

Proof. Exericse. (Check video 9/13) ■

Example. Z(Sn) = {e}, n ≥ 3

Example. If G acts on its subgroups in conjugation, H ≤ G,

|OH | = [G : NG(H)] NG(H) = {g ∈ G
∣∣ gHg−1 = H}

Theorem. Burnside’s Lemma. If G,X finite, X is a G-set, then the number of orbits of the
action is 1

|G|
∑
g∈G |Fg|. where Fg is the set of elements of X fixed by g.

Proof. Consider S = {(g, x)
∣∣ gx = x} ⊂ G×X . We can count S in two different ways.

1. ∀g ∈ G, there are |Fg| elements fixed by g so |S| =
∑
g∈G |Fg|.

2. ∀x ∈ X, there are |Gx| elements of X fixed in x, which equals |G|/[Ox].

So
∑
g∈G |Fg| =

∑
x∈X

|G|
|Ox| = |G|

∑
distinct orbitsOx

1
|Ox| |Ox| = |G| × num orbits in X ■
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Corollary. If G acts transitively on X , and |X| > 1, then there is g ∈ G such that Fg = ∅. In
other words, ∀x, y ∈ X,∃g such that gx = y. Equivalently, X has 1 orbit.

Proof. Burnside’s Lemma gives |G| =
∑
g∈G |Fg| = Fe +

∑
g ̸=e |Fg|.

If |Fg| ≥ 1∀g, then |G| = |X|+
∑
g ̸=e |Fg| ≥ |X|+ (|G| − 1) =⇒ |X| ≤ 1, a contradiction. ■

1.7.1 Class Formula

Class Formula is when G acts on G via conjugation. If x ∈ G = X ,

Gx = {g ∈ G
∣∣ gx = xg}︸ ︷︷ ︸
N(x)

≤ G, Ox = {gxg−1
∣∣ g ∈ G}

Ox gives a partition of G. So |G| =
∑

distinct orbits |Ox| =
∑

distinct orbits[G : Gx = N(x)]

|Ox| = 1 ⇐⇒ x ∈ Z(G). So we can write that summing all distinct conjugacy class with more
than 1 elements.

|G| = Z(G) +
∑

[G : Gx]

Corollary. If |G| = pr, p prime, then Z(G) ̸= {e}.

Proof. Since |G| = |Z(G)| =
∑

[G : Gx], so if Z(G) = {e}, we get pr = 1 +
∑ |G|

|Gx| . where
|G|/|Gx| > 1 and is a divisor of |G| = pr. This implies that p

∣∣ 1, a contradiction =⇒ Z(G) ̸=
1 ■

Corollary. If |G| = p2, then G is ableian.

Proof. IfG is not abelian, then |Z(G)| = p, so Z(G) is proper subgroup ofG. Pick a ∈ G−Z(G),
then N(a) = {b

∣∣ ab = ba} ≠ G. However Z(G) is proper subgroup of N(a) and N(a) proper
subgroup of G, a contradiction (a in N(a) but not in Z(G)). ■

Corollary. If |G| = pr, then G is solvable.

Proof. Proof by induction on r, r = 1 true.

Suppose this holds for 1, ..., r − 1. Consider Z(G) ⊴ G and Z(G) ̸= {e}. Here |Z(G)| and
|G/Z(G)| are powers of p. So by hypothesis, Z(G) and |G/Z(G)| solvable =⇒ G also solvable.

■

1.8 Sylow Theorems

Theorem. Suppose |G| = prm, gcd(p,m) = 1. Then ∀0 ≤ s ≤ r, G has a subgroup of size ps.

Proof idea: abelian case and non abelian case.

Lemma: If G is abelian and p
∣∣ |G|, then G has a subgroup of order p.

Proof. Induction on order of G. If |G| = p, there is nothing to prove. Suppose |G| > p, Let
e ̸= a ∈ G, t = ord(a). Then H = {e, a, ..., at−1} ≤ G, and there are two cases:

11



1. If p
∣∣ t, so | < a

t
p > | = p

2. Otherwise, let n = |G|, n = tn′ so p
∣∣ n′ = |G/H| < n . So, by induction hypothesis,

G/H has subgroup of order p, so an order of order p. Let there be a surjective map
ϕ : G → G/H , so if ϕ(b) = b̄, then p

∣∣ ord(b). So we can apply case 1 to b and get a
subgroup of order p.

Remark: If ϕ : G → G′ is a group homomorphism and g ∈ G and ord(ϕ(g))
∣∣ ord(g)︸ ︷︷ ︸

m

, so

gm = e→ ϕ(g)m = e. (ak = e =⇒ ord(a)
∣∣ k) ■

Proof of theorem. Recall that class formula states that when G acts on G by conjugation, |G| =
|Z(G)|+

∑
[G : Gx], summing over distinct orbits with more than 1 element.

Fix p induction on G. If |G| = p, we are done. Now, let’s have two cases where (1) p
∣∣ |Z(G)|

and (2) p doesn’t divide |Z(G)|.

In case 1, by lemma, Z(G) has subgroup H of order p. Since H ≤ Z(G) and Z(G) ⊴ G,
we get H ⊴ G so G/H is a group of size pr−1m. So by induction hypothesis G/H has a
subgroup of order s for all 0 ≤ s ≤ r − 1. Any subgroup of G/H is K/H for H ≤ K ≤ G. So
|H| = p, |K/H| = ps =⇒ |K| = ps+1. So this holds for 1 ≤ s+ 1 ≤ r.

In case 2, G is not abelian, and we make two subcases.

1. Suppose ∀x /∈ Z(G), p
∣∣ [G : Gx]. This case is not possible since p

∣∣ |G| and p doesn’t
divide Z(G)

2. ∃x ∈ Z(G), p ∤ [G : Gx] = |G|/|Gx| =⇒ pr
∣∣ |Gx|, and |Gx| < |G|. By induction

hypothesis, Gx and therefore G has a subgroup of ps, 0 ≤ s ≤ r.

■

Note: H ⊴ K ⊴ G ≠⇒ H ⊴ G. Look at G = A4.

Definition. A group G is a p-group if |G| = pr. So ∀e ̸= a ∈ G, p
∣∣ ord(a). And if |G| =

prm, gcd(m, p) = 1, H ≤ G, then H is a p-subgroup if |H| = ps, and H is a p-sylow subgroup
if |H| = pr.

Theorem. If p
∣∣ |G|, then

1. Every p subgroup is contained in a p−sylow subgroup.

2. Any two p−sylow subgroups are conjugate.

3. If r = number of p-sylow subgroups, then r
∣∣ |G| and r ≡ 1 mod p

Proposition. If H is a p-subgroup and P is a sylow p-subgroup, then H is contained in a
conjugate of P : ∃g ∈ G,H ≤ gP−1g

Implication: The proposition shows the first and second part of them.

Part 1. |gPg−1| = |P |, so the conjugate is also a sylow P -sylow ■

Part 2. P, P ′ sylow, then ∃g such that P ′ ⊆ gPg−1. Then |gPg−1| = |P | = pr and |P ′| = r =⇒
P ′ = gPg−1.

■
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Proposition Proof. Let S be the set of conjugates of P and H acts on S by conjugation, so that h ·
gPg−1 := hgPg−1h−1. Then S =

∑
distinct orbits |Os| = number of fixed points +

∑
distinct w/ size>1 |Os|.

Now the goal is to show that there ∃ a fixed point. Since |Os| = [H : Hs] and |H| = ps, then
p
∣∣ |Os|.

Here, |S| = [G : NG(P )] =⇒ |S| = |G|
|NG(P )| . Since P ⊴ NG(P ) ≤ G and pr

∣∣ |NG(P )|, I get
p ∤ |S| and so pr

∣∣ |NG(P )|.
Let gPg−1 be a fixed point. Then ∀h ∈ H,hgPg−1h−1 = gPg−1 =⇒ P = g−1h−1gPg−1hg
=⇒ P = g−1h−1gP (g−1h−1g)−1 =⇒ g−1h−1g ∈ NG(P ). So ∀h ∈ H =⇒ g−1Hg ⊆ NG(P ).

Let K = g−1Hg, K,P ≤ NG(P ) and P ⊴ NG(P ).

So by the second isomorphism theorem,KP/P ≃ K/K∩P =⇒ |KP | = |P ||K|
|K∩P | and |KP |

∣∣ |G|,
and |P ||K| is a power of p =⇒ |K|

|K∩P | = 1 =⇒ K ⊆ P =⇒ g−1Hg ⊆ P =⇒ H ⊆
gPg−1. ■

Part 3 Proof. By part 2, r = number of all conjugates of P = [G : NG(P )], and [G : NG(P )]
∣∣ |G|.

To show r ≡ 1 mod p, let H = P from proof of the proposition, so that r = number of fixed
points + a multiple of p

If gPg−1 is a fixed point, then by the proof P ⊆ gPg−1, but |P | = |gPg−1| so P = gPg−1. So
only one fixed point =⇒ r ≡ 1(mod p) ■

Note: r = 1 ⇐⇒ gPg−1 = P ∀g ∈ G ⇐⇒ P ⊴ G

Corollary. If |G| = pq where p, q are distinct primes and p ̸≡ 1 mod q and q ̸≡ 1 mod p. Then
G is cyclic.

Proof. Let r1 be the number of sylow p-subgroups and r2 be the number of sylow q-subgroups.
Then r1

∣∣ pq, r1 ≡ 1 mod p =⇒ r1 = 1, and similarly r2 = 1

If H1, H2 ≤ G with |H1| = p and |H2| = q, then by the note, H1, H2 ⊴ G.

H1 = {e, a, ..., ap−1} =< a >,H2 = {e, b, ..., bq−1} =< b >. For aba−1 ∈ H2 and ba−1b−1 ∈ H1,
aba−1b−1 ∈ H1 ∩H2 = {e} =⇒ ab = ba =⇒ ord(ab) ∈ {1, p, q, pq}. So (ab)p = apbp = bp ̸=
e =⇒ ord(ab) = pq =⇒ G =< ab > ■

Fact: Group of order < 60 is solvable, since N ⊴ G,N,G/N solvable =⇒ G solvable.

Example. If |G| ≤ 30, and G is not of prime order, then G is not simple.

Corollary. If |G| ≤ 30, then G is solvable.

Proposition. If |G| = n and p is the smallest prime divisor of n and H ≤ G has index p, then
H ⊴ G

Proof. If p = 2, this is proved before.

Suppose H ⋬ G. Then there is g ∈ G such that gHg−1 ̸= H . Let K = gHg−1.

Since |HK| = |H| |K|
|H∩K| , where |H ∩K| which divides |K| and so |G|. Then either |K|

|H∩K| = 1

or |K|
|H∩K| ≥ p.
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For the first case, H ∩K = K =⇒ K ⊆ H =⇒ gHg−1 ⊆ H =⇒ gHg−1 = H , not true.

For second case, |HK| ≥ p|H| = |G| =⇒ HK = G =⇒ g−1 ∈ HK = HgHg−1. So for some
h, h′ ∈ H,hgh′ = e =⇒ g = h−1h′−1 ∈ H =⇒ gHg−1 = H , a contradiction. So H ⊴ H ■

Corollary. If |G| = pqr, and p, q are distinct prime and p < q. Then G has a normal subgroup.

Proof. By Sylow Theorem, there is a sylow q-subgroup H , so [G : H] = p. H is normal from
the previous corollary. ■

Corollary. If |G| = pq, p ̸= q, then G has a non-trivial normal subgroup.

Proposition. If |G| = pq2, and p, q are distinct prime, then G is not simple.

Proof. If p < q, we are done by previous corollary.

So if p > q, let r be the number of sylow p-subgroups and s be number of sylow q subgroups.

Goal is to show that r = 1 or s = 1 since the only sylow subgroup is normal.

Since r ≡ 1 mod p, r
∣∣ |G| = pq2 =⇒ r

∣∣ q2. So either r = 1, r = q, r = q2. If r = 1, we are
done. r = q is impossible since q ≡ 1 mod p and p

∣∣ q − 1 but p > q. So assume r = q2.

So because s ≡ 1 mod q, s
∣∣ |G| = pq2, then s

∣∣ p =⇒ s = 1 or s = q. If s = 1, we are done. So
assume s = p.

Then we have q2 subgroups of order p and p subgroups of order q2. Then |G| ≥ 1+ q2(p−1)+
q2 − 1, so there is only 1 q-sylow subgroup. So s = 1, and we are done. ■

Corollary. Every group of size ≤ n which is not of prime is not simple.

[Check Video]

Fact: If |G| = 24, then G is not simple.

Proof. Let r be the number of sylow 2-subgroups and s be the number of sylow 3-subgroups.{
r ≡ 1 mod 2

r
∣∣ 3 =⇒

{
r = 1, so we have normal subgroup
r = 3

So assume r = 3, and we have sylow 2-subgroups H1, H2, H3, |Hi| = 8. Let S = {H1, H2, H3}
and G acts on S by conjugation.

So there is a homomorphism ϕ : G→ S3, the group of permuations of S.

Use the fact that kerϕ ⊴ G and we calim that kerϕ ̸= {e} or G.

• kerϕ ̸= {e} : |G| = 24, |S3| = 6 =⇒ ϕ not injective =⇒ kerϕ ̸= {e}

• kerϕ ̸= G : H1, H2 are conjugate by Sylow Theorem, so ∃g ∈ G such that gH1g
−1 =

H2 =⇒ g ·H1 ̸= H1 =⇒ ϕ(g) ̸= e.{
s ≡ 1 mod 3

s
∣∣ 8 =⇒

{
s = 1, so we have normal subgroup
s = 4

So assume s = 4 ■
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Fact: Any group of order < 60 is solvable. Hint: 36 similar to 24, and 40 and 56 use counting of
elements (union larger than elements?)

1.9 Dihedral Group

Here, |Dn| = 2n,Dn = {e, x, .., xn−1, y, yx, ..., yxn−1}.

When n = 3, D3 = S3

Fact: Dn is solvable (Homework exercise).

1.10 Direct Product of Groups

Let G1, G2 be groups. Then G1 × G2 = {(g1, g2)
∣∣ g1 ∈ G1, g2 ∈ G2}, and (g1, g2)(g

′
1, g

′
2) =

(g1g
′
1, g2g

′
2). The identity element is (e1, e2) and (g1, g2)

−1 = (g−1
1 , g−1

2 ).

Let I be an index set Gi, i ∈ I . Then∏
i∈I

Gi = {(xi)i∈I
∣∣ xi ∈ Gi}

are the direct product of Gi, where (xi)i∈I(yi)i∈I = (xiyi)i∈I .

Then, the direct sum of abelian groups where Ai abelian, ∀i ∈ I .⊕
i∈I

Ai ≤
∏
i∈I

Ai,
⊕
i∈I

Ai = {(ai)i∈I
∣∣ there are only finitely many non-zero ai}

Notice that if I is finite, then
⊕

i∈I Ai =
∏
i∈I Ai.

Definition. Let A be an ableian group. Then

• a ∈ A is torsion if ord(a) is finite: ∃n > 0, na = 0

• Ator is the set of torsion elements inA,Ator ≤ A since na = 0,mb = 0 =⇒ nm(a+b) = 0

• A is torsion-free if Ator = {0}.

• A is torsion if Ator = A

Example. Z is torsion-free. Z/m is torsion, and any finite abelian group is torsion.

Theorem. If A is a torsion abelian group, then A ≃
⊕

pi prime A(p), where A(p) are elements a
in A such that ord(a) is a power of p, pra = 0∃r ≥ 1.

Proof. Plan: We have A ≃ Ator
⊕
A/Ator, where A/Ator is torsion-free. Both parts are finitely

generated. Then we show that Ator is finite. Then since A/Ator is finitely generated, and
torsion free, A/Ator ≃ Z ⊕ · · · ⊕ Z. Then, show that Ator finite is a direct sum of abelian
p-groups, thus a direct sum of cyclic group.

Let ϕ : ⊕p primeA(p)→ A is homomorphism, (xp) 7→
∑
xp ∈ A.

ϕ surjective: a ∈ A, ord(a) = m = pr11 · · · prnn , pi distinct prime. Then proceed by induc-
tion on n. If n = 1, then ord(a) = pr11 =⇒ a ∈ A(p) =⇒ a ∈ im(ϕ). Then for n,
ord(a) = pr11 · · · prnn ⇐⇒ apr11 · · · prnn = 0. So since pn1 · · · p

rn−1

n−1 and prnn coprime, ∃s, t ∈
Z such that spn1 · · · p

rn−1

n−1 + tprnn = 1, aspnn · · · p
rn−1

n−1 + atprnn = a. Since the two numbers are in
imϕ, their sum is in im(ϕ).

15



ϕ injective: Suppose ϕ((x0)) = 0, and ∃q, xq ̸= 0, then
∑
xp = 0 =⇒ xq = −

∑
p ̸=q xp =⇒

xq = −xp1−...−−xpn . ord(xpi) = psii =⇒ ps11 · · · psrr (−xp1−...−xpr ) = 0 ⇐⇒ q(ps11 · · · psrr ) =
0 =⇒ ord(q)

∣∣ ps11 · · · psrr , a contradiction. ■

Example. A = Q/Z, where A(p) = {ab + Z
∣∣ pra

b ∈ Z} for some r.Then pra
b = c =⇒ a

b = c
pr ,

so = { cpr + Z
∣∣ c ∈ Z, r ≥ 0}

Lemma: Every finitely generated torsion abelian group is finite.

Proof. If ord(ai) = mi, and A = ⟨a1, ..., ak⟩ = {n1a1 + ... + nkak
∣∣ ni ∈ Z} = {n1a1 + ... +

nkak
∣∣ n1 ∈ Z, 0 ≤ ni < mi}, which is finite. ■

Theorem. Every finite abelian p-group is a direct sum of cyclic groups.

Lemma: If A is a finite abelian p-group which is not cyclic, then A has at least 2 subgroups of
order p.

Lemma Proof. See homework ■

Theorem Proof. Let a ∈ A be an element of maximal order. We prove by induction on |A| that
there is a B ≤ A such that A =< a > ⊕B. This means that if B1, B2 ≤ A such that B1 ∩ B2 =
{0}.

If |A| = p, we are done.

Let ord(a) = ps. Then< a > has a unique subgroup of order p. Let< b > be another subgroup
of order p in A such that ⟨a⟩ ∩ ⟨b⟩ = {0}, which exists due to the previous lemma.

Consider Ā = A/ < b >, |Ā| = |A|
p < |A|. Then there is ā = a+ < b >, an element of maximal

order in Ā.

By the induction hypothesis, there is a B̄ such that Ā =< ā > ⊕B̄.

So B̄ ≤ Ā = A/ < a > =⇒ B̄ = B/ < a > for B ≤ A with < a >⊂ B0. Then A =< a > ⊕B

■

Definition. A group A is free if A has a basis {ai}i∈I such that ∀a ∈ A, a =
∑
i∈I λiai in a

unique way. So if A has a basis with n elements, A ≃ Z⊕ · · · ⊕ Z︸ ︷︷ ︸
n elements

.

Proposition. Free abelian groups are torsion-free

Proof. A =< ai >. Suppose b ̸= 0 ∈ A such that mb = 0, b =
∑
ai =⇒ mb =

∑
(mλi)ai =⇒

mλ = 0∀i =⇒ b = 0, a contradiction. ■

Example. Torsion-free abelian groups are not necessarily free. Consider Q as an example.

Proposition. Every finitely-generated torsion-free abelian group is free, A ≃ Z⊕ · · · ⊕ Z.
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Proof. Let A =< a1, ..., an > and induct on n. If n = 1, A =< a1 > is torsion-free =⇒ |A| =
∞ =⇒ A ≃ Z.

n− 1 =⇒ n : Let B := {a ∈ A
∣∣ma ∈< a1 > ∃m > 0}.

Claim: B is cyclic, B ≤ A =⇒ B finitely generated.

Let B =< b1, ..., bl > ∀i∃mi,mibi ∈< a1 > . Let m = m1 · · ·ml. Then mb ∈< a1 > ∀b ∈ B.

Now look at ϕ : B →< a >, b 7→ mb. Then im(ϕ) ≤< a1 >.

So im(ϕ) is cyclic: imϕ =< λa1 >, λ ≥ 1. Let b1 ∈ B such that ϕ(b1) = λai.

Then B =< b1 >. If b ∈ B,mb ∈ imϕ =⇒ mb = tλ = tmb1 for some t =⇒ m(b − tb1) = 0.
Since A torsion free, this means b = tb1 =⇒ b ∈< b1 >.

A/B is generated by a2 +B, ..., an + b and is torsion-free, where if m(a+B) = 0,ma ∈ B =⇒
∃λ : λma ∈< a1 > =⇒ a ∈ B.

By the induction hypothesis, A/B is free =⇒ by proposition last time, A = B ⊕C ≃ Z⊕ Z⊕
· · · ⊕ Z., so this is free. ■

Proposition. Every subgroup of a finitely generated abelian group is finitely generated.

Idea: This implies thatAtor is finitely generated. Combining with previous result that a finitely
generated and torsion group is finite, I can then write Ator = Zpr11 ⊕ · · · ⊕ Zprmm .

Proof. Let H ≤ A,A = ⟨a1, ..., an⟩, and proceed by induction on n. If n = 1, this is cyclic so
clearly true.

n−1 =⇒ n: LetB = ⟨a1, ..., an−1⟩ ≤ A. Then by induction hypothesis, H∩B = ⟨h1, ..., hn−1⟩
generated by at most n− 1 elements.

Also, A/B =< an +B >.

Note that H+B
B ≃ H

H∩B . Since H+B
B ≤ A

B , it is also cyclic, so H
H∩B cyclic, generated by some

⟨hn + (H ∩B)⟩, hn ∈ H .

SoH =< h1, .., hn >, I need to show that they actually generateH . If h ∈ H , then h+(H∩B) =

λnhn+(H∩B) =⇒ h−λnhn ∈ (H∩B) =⇒ h−λnhn =
∑n−1
i=1 λihi =⇒ h =

∑n
i=1 λihi. ■

Proposition. If A is abelian and B ⊆ A such that A/B is a free abelian group, then there is a
subgroup C ≤ A such that A = B ⊕ C.

Proof. Let {ai +B}i∈I be a basis for A/B. Let C =< ai >≤ A. We claim that A = B ⊕ C.

First showB∩C = {0} : Suppose
∑
i∈I λiai ∈ B, then

∑
i∈I λiai+B = B, so

∑
i∈I λi(ai+B) =

B, where B is the 0 of A/B. So, λi = 0∀i.

To showA = B+C : If a ∈ A, then a+B =
∑
i∈I λi(a+B) inA/B, so a+B =

∑
i∈I(λiai)+B,

so a−
∑
i∈I

λiai︸ ︷︷ ︸
∈C

∈ B. ■
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Summary: Since A is finitely generated, A/Ator is torsion-free, and A finitely generated =⇒
A/Ator is finitely generated. So, by previous proposition, A/Ator is free.

Then by the other proposition, ∃C ≤ A,A = Ator ⊕ C. So C is finitely generated, and can be
written as Z⊕ · · · ⊕ Z

Definition. Let F be a group (not necessarily abelian) and X ⊂ F . Then F is a free group
with basis X if it satisfies the following universal property:

• ∀ group G and every function f : X → G, there is a unique homomorphism ϕ : F → G
extending f .

For a set X , the free group generated by X = {a1 · · · ak
∣∣ ai ∈ {e} ∪X ∪X−1}

Example. If X = {x}, the free group generated by X = {xr
∣∣ r ∈ Z} ≃ Z

Example. X = {x, y}, then F = {xk1yr1 · · ·xknyrn
∣∣ rn, kn ∈ Z, n > 0}.

Fact: Every group is a quotient of a free group. G =< xi >, i ∈ I .

Let F be free group generated by {xi}i∈I . By the universal property, ∃ homomorphism ϕ :
F → G,ϕ surjective. Let N = ker(ϕ), N ⊴ F . Then F/N ≃ G.

If N =< yj >, j ∈ J . Then < xi, i ∈ I
∣∣ yj = e, j ∈ J > is a presentation of G.

Example. G = Z6,Z6 = {0, 1, 2, 3, 4, 5}. Let ϕ : Z→ Z6, 1 7→ 1̄. N =< 6 >⊆ Z. Z6 =< x
∣∣ x6 =

e >

Example. S3 = {e, (1 2)︸︷︷︸
x1

, (1 3)︸︷︷︸
x2x1

, (2 3)︸︷︷︸
x2
2x1

, (1 2 3)︸ ︷︷ ︸
x2

, (1 3 2)︸ ︷︷ ︸
x2
2

} Then S3 =< x1, x2 >. So a presentation of

S3 =< x1, x2
∣∣ x21 = e, x32 = e, x2x1 = x1x

2
2 >

Proposition. LetG be a free group generated by x, y. G is finitely generated, H ≤ G generated
by {yxy−1, y2xy−2, y3xy−3, ...}. Then H is not finitely generated.

1.11 Automorphisms

Definition. Let G be a group. If ϕ : G → G is an isomorphism, then ϕ is an automorphism of
G. Aut(G) is the group of automorphisms of G under composition of function, Aut(G) ≤ SG.

Example. What is Aut(G) if G is cylic of order m? Define ϕ : G→ G,ϕ(x) = xl, 0 ≤ l ≤ m−1.
This is always a homomorphism. In particular, ϕ isomorphism ⇐⇒ xl has order m in
G ⇐⇒ m

gcd(m,l) = m ⇐⇒ gcd(m, l) = 1.

Example. Let Z×
m be the group of units in Zm under multiplication = {l ∈ Zm

∣∣ gcd(l,m) = 1}.
Then Aut(G)→ Z×

m, ϕ 7→ l, ϕ(x) = xl is an isomorphism.{
ϕ 7→ l1 =⇒ ϕ1(x) = xl1

ϕ2 7→ l2 =⇒ ϕ2(x) = xl2
=⇒ ϕ2 ◦ ϕ(x) = ϕ1(x

l2) = xl1l2

1.12 Semi-Direct Product of Groups

Previously for A abelian, H,K ≤ A,H ∩K = {0}, A = H +K, we denote A = H ⊕K, where
H ×K ≃ A, (h, k) 7→ h+ k.
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More generally, if G is a group, H,K ≤ G such that H ∩K = {e}, G = HK and hk = kh∀h ∈
H, k ∈ K, then H ×K ≃ G, (h, k) 7→ hk.

Proof. (h, k) 7→ hk, (h′, k′) 7→ h′k′, (hh′, kk′) 7→ hh′kk′ = hkh′k′.

(h, k) 7→ e =⇒ hk = e =⇒ k = h−1 =⇒ k ∈ K ∩H =⇒ k, h = e. ■

In particular if it is not the case that hk = kh∀h ∈ H, k ∈ K, then G ̸≃ H ×K.

Example. G = S3, H = {e, (1 2 3), (1 3 2)},K = {e, (1 2)}. HK = S3, H ∩ K = {e}. But
S3 ̸≃ H ×K ≃ Z3 × Z2.

If K ≤ G,H ⊴ G, then HK ≤ G.

Example. Let K act on H (normal to G) by conjugation. Then ϕ : K → Aut(H) is k 7→ ϕk,
ϕk(h) = khk−1∀h.

Definition. Let H and K be two groups and ϕ : K → Aut(H) a homomorphism, k 7→ ϕk.
Then (H ×K) with operation (h, k)(h′, k′) = (hϕk(h

′), kk′) is a group, denoted by H ⋊K, the
semi-direct product of H and K.

Proof of Group Properties. Identity: (e, e). (e, e)(h, k) = (eϕe(h), k) = (h, k). (h, k)(e, e) =
(h, ϕk(e), k) = (h, k).

Inverse of (h, k) = (ϕk−1(h−1), k−1). (h, k)(ϕk−1(h−1), k−1) = (hϕk(ϕk−1)(h−1), e) = (e, e). ■

Fact: If ϕ is the identity homomorphism ϕk = e on H , then H ⋊K ≃ H ×K.

H ×K contains copies H and K as normal subgroup. H → H ×K, h 7→ (h, e).

(h′, k′)(h, e)(h′, k−1) = (h′hh−1, e), and H ⊴ (H ⋊K)

Proposition. If H,K ≤ G,H ⊴ G,H ∩K = {e}, G = HK, then G ≃ H ⋊K. k 7→ Aut(H), k 7→
ϕk, ϕk(h) = khk−1.

Corollary. S3 ≃ Z3 ⋊ Z2. Notice that this means that ϕ trivial or Z3 ⋊ Z2 = Z2 or ϕ1(1) = 2
which is S3

Proposition Proof. f : H ⋊ K → G, (h, k) 7→ hk. To show f injective, f(h, k) = e =⇒ hk =
e =⇒ h, k = e. ■

1.13 Classification of Small Groups

By order,

2. Z2

3. Z3

4. Z2 ⊕ Z2,Z4

5. Z5

6. Z2 ⊕ Z3. Non-abelian: S3

7. Z7

8. Z8,Z2 ⊕ Z4,Z2 ⊕ Z2 ⊕ Z2. Non-abelian D4, Q8
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9. Z9,Z3 ⊕ Z3

10. Z10,Z5b⊕ Z2. Non-abelian: D5

11. Z11

12. Z3 ⊕ Z4,Z3 ⊕ Z2 ⊕ Z2. Non-abelian: D6(= Z2 × S3), A4,Z3 ⋊ Z4,

In particular, ϕ : Z4 → Aut(Z3), which is Z2. 0 7→ 0, 1 7→ 1, 2 7→ 0, 3 7→ 1
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2 Rings

Definition. A non-empty set R is a ring if there are operations multiplication(·) and addition
(+) on R such that

• (R,+) is an abelian group.

• a · (b · c) = (a · b) · c

• a · (b+ c) = a · b+ a · c, (b+ c) · a = b · a+ c · a.

• There is an element 1 ∈ R such that a · 1 = 1 · a = a∀a ∈ R.

Properties:

• Unity is unique. 1 = 1 · 1′ = 1′

• 0 · a = 0,∀a ∈ R : 0a = (0 + 0)a = 0a+ 0a =⇒ 0a = 0

• (−a)b = a(−b) = −(ab).(−a)b+ ab = (−a+ a)b = 0b = b =⇒ (−a)b = −(ab)

Example. (R,+, ·), (Mn(R),+, ·), (R[x],+, ·), (R[[x]],+, ·), which is the ring of formal power
series. {a0 + a1x+ a2x

2 + ...
∣∣ ai ∈ R}.

Definition. Let R,S be rings, f : R→ S is a ring homomorphism if

• f(a+ b) = f(a) + f(b)

• f(ab) = f(a)f(b)

• f(1R) = f(1S)

Example. f : R→M2(R), r 7→
[
r 0
0 0

]
satisfies 1 and 2 but not 3.

Definition. S ⊆ R is a subring if (S,+) ≤ (R,+) and 1 ∈ S and S is closed under multiplica-
tion.

Definition. I ⊂ R is a left ideal if

• (I,+) ≤ (R,+)

• ∀r ∈ R, a ∈ I , we have ra ∈ I .

A right ideal is similarly defined. In particular, I ⊂ R is an ideal if both right and left ideals.

Fact: If f : R→ S is a ring homomorphism, then

• ker(f) is an ideal of R

• im(f) is a subring of S.

Definition. Let I ⊂ R be an ideal

R/I := {r + I
∣∣ r ∈ R}

is a ring with (r1 + I)(r2 + I) := r1r2 + I , (r1 + I)(r2 + I) := (r1 + r2) + I

Definition.

• R is commutative if ab = ba∀a, b ∈ R.

• R is a division ring if every 0 ̸= a ∈ R has a multiplicative inverse.
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• A commutative division ring is a field.

• If a, b ∈ R, a, b ̸= 0 but ab = 0, then a, b are called zero devisors.

• A commutative ring with no zero divisor is an integral domain.

Example.

• Z is an integral domain

• Zn is a field ⇐⇒ n is prime.

2.1 Ideals and Quotient Rings

Let I ⊂ R be an ideal, then we have R/I = {r + I
∣∣ r ∈ R}, with (r + I)(s+ I) = rs+ I .

Proof of Well-defined Multiplication. Want to check that r + I = r′ + I and s + I = s′ + I =⇒
rs+ I = r′s′ + I .

r − r′, s− s′ ∈ I. On the other side, rs− r′s′ = r(s− s′) + (r − r′)s′ ∈ I , which is true. ■

R/I is a ring, with unity 1 +R and zero 0 +R. The canonical homomorphism is given by

f : R→ R/I, r 7→ r + I

where f is clearly surjective and ker(f) = I .

2.1.1 Ring Isomorphism Theorems

First Isomorphism Theorem. If f : R→ S is a ring homomorphism, then

R/ker(f) ≃ im(f)

[Second Isomorphism Theorem.] If S ⊆ R is a subring and I ⊂ R is an ideal, then S ∩ I is an
ideal of S and I is an ideal in

S + I = {s+ i
∣∣ s ∈ S, i ∈ I} ≤ R

and
S/S ∩ I ≃ S + I/I

Ideal in S + I . (s+ i)(s′ + i′) = ss′ + is′ + si′ + ii′, with is′ + si′ + ii′ ∈ I ■

[Third Isomorphism Theorem.] If I ⊂ J ⊆ R, I, J ideals in R, then J/I = {j+ I
∣∣ j ∈ J} is an

ideal of R/I and
R/I

J/I
≃ R/J

[Fourth Isomorphism Theorem.] (Correspondance Theorem) Let I ⊂ R be an ideal. There is
a 1-1 correspondence between subrings of R/I and subrings of R containing I .
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2.2 Maximal Ideals and Prime Ideals

Definition. An ideal M ⊊ R is called a maximal ideal if for any I ⊆ R with M ⊆ I ⊆ R, then
I =M or I = R. Every proper ideal is contained in a maximal ideal by Zorn’s Lemma.

[Zorn’s Lemma] If S is a partially ordered set in which every totally ordered subset has an upper
bound contains a maximal element. It is Partially ordered if

a ≤ a
a ≤ b and b ≤ a =⇒ a = b

a ≤ b and b ≤ c =⇒ a ≤ c

So it follows that if S′ ⊂ S is totally ordered, then
⋃
I∈S′ I is in S and an upper bound in S.

Proposition. I is maximal ideal ⇐⇒ R/I is a field

Proof. =⇒ : Assume r + I ̸= I , so r /∈ I . If R is a commutative ring, X ⊆ R, then the ideals
generated by X , ⟨X⟩ = {r1x1 + · · · rkxk

∣∣ k ≥ 1, ri ∈ R, xi ∈ X}.

Then let J = ⟨r, I⟩ ⊆ R, then clearly I ⊆ J ⊆ R. Since J ideal and I maximal ideal, I = J or
J = R, but r ∈ J − I , so J = R =⇒ 1 ∈ J = ⟨i, J⟩ =⇒ 1 = r′r + i. Thus 1 − rr′ ∈ I =⇒
(1 + I) = (r + I)(r′ + I), where (r′ + I) is the inverse of (r + I).

⇐=: If R/I is a field and I ⊆ J ⊆ R, then J/I is an ideal of R/I . The only proper ideals of a
field is {0} ■

Definition. If I ⊊ R is an ideal, we say I is prime if ab ∈ I =⇒ a ∈ I or b ∈ I for a, b ∈ R.

Example. R = Z, and let mZ be an ideal, m ∈ Z. mZ is prime iff m is prime

Proof. =⇒ : If m = ab, and a, b > 1, then ab = m ∈ mZ but a, b /∈ mZ

⇐=: If ab ∈ mZ, then m
∣∣ ab =⇒ m

∣∣ a or m
∣∣ ■

Proposition.

1. Every maximal ideal is prime

2. I ⊊ R is prime ⇐⇒ R/I is an integral domain.

3. P is a prime ideal ⇐⇒ IJ ⊆ P implies I ⊆ P or J ⊆ P for ideals I, J ⊆ R. In particular,
IJ := {

∑n
i=1 aibi

∣∣ n ≥ 1, ai ∈ I, bi ∈ J} is an ideal of R and IJ ⊆ I ∩ J .

Proof (1): If M is maximal and ab ∈M and a /∈M , then the ideal generated by a,M , ⟨a,M⟩ :=
{ra + m,m ∈ M, r ∈ R} is an ideal where M ⊊ ⟨a,M⟩ ⊂ R. Then ⟨a,M⟩ = R since M
maximal, so 1 = ra+m for some r ∈ R,m ∈M =⇒ b = rab+mb, so b ∈M . ■

Proof (2): =⇒ : If (a+ I)(b+ I) = 0, then ab+ I = 0, so ab ∈ I =⇒ a ∈ I or b ∈ I , so a+ I = 0̄
or b+ I = 0̄, where 0̄ is the zero of R/I .

⇐=: If ab ∈ I, then (a+ I)(b+ I) = 0̄, so a+ I = 0̄ or b+ I = 0̄, so a ∈ I or b ∈ I . ■
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Proof (3): If P is prime and IJ ⊆ P but I ⊊ P and J ⊊ P , then pick a ∈ I\P and b ∈ J\P ,
then ab ∈ IJ but ab /∈ P , a contradiction

Conversely, assume IJ ⊆ P implies I ⊆ P or J ⊆ P for ideals I, J ⊆ R. Let I = ⟨a⟩ = {ra
∣∣ r ∈

R} and J = ⟨b⟩ = {rb
∣∣ r ∈ R}. Then IJ = ⟨ab⟩ (check this). So IJ ⊆ P , so a ∈ I ⊆ P or

b ∈ J ⊆ P , so a ∈ P or b ∈ P . ■

Example. mZ ⊆ Z is prime ⇐⇒ mZ is maximal ⇐⇒ m is prime.

Proof. mZ ⊆ nZ ⇐⇒ n
∣∣m, so prime implies maximal ideal. Alternatively, consider proposi-

tion 2. ■

Example. {0} is a prime ideal ⇐⇒ R is an integral domain. This also follows from proposi-
tion 2.

2.3 Chinese Remainder Theorem

For 0 < m1, ...,mn ∈ Z, gcd(mi,mj) = 1, then for any r1, ..., rn ∈ Z, the system of equation
x ≡ r1( mod m1)
...
x ≡ rn( mod mn)

has a solution

In rings, I reformulate this problem for a commutative ring R, where I1, ..., In, n ≥ 2 are
ideals in R such that Ii + Ij = R for every i, j, i ̸= j. Then for any r1, ..., rn ∈ R, there is
x ∈ R such that x− ri ∈ Ii ∀1 ≤ i ≤ n.

Proof. Proceed with induction on n: If n = 2, I1 + I2 = R =⇒ ∃ai ∈ Ii such that a1 + a2 = 1.
Then let x = r1a1 + r2a1, then x − r1 = r1(a2 − 1) + r2a1 = −r1a1 + r2a1 ∈ I1. Similar for
x− r2.

2 =⇒ n : For I1, ..., In, let J = I2 · · · In. Claim: I + J = R.

So for I1+ Ii = R∀i ≥ 2,∃ai ∈ I1, bi ∈ Ii such that ai+ bi = 1 =⇒ 1 =
∏n
i=2(ai+ bi) = I1+J .

By case 2 of the theorem, ∃y1 ∈ R such that y1 − 1 ∈ I1, y1 − 0 ∈ J =⇒ y1 ∈ I2 · · · In. In a
similar way, ∀1 ≤ i ≤ n, we find yi ∈ R such that yi − 1 ∈ Ii and yi = I1 · · · Îi · In ⊆ Ij∀j ̸= i.
Note that I ∩ J ⊆ IJ .

Let x = r1y1 + ...+ rnyn. Then x− ri = r1y1 + · · · ri(yi − 1) + · · · rnyn. Every yi is in Ii, so this
entire expression is in Ii. ■

2.4 Product of Rings

Let R,S be rings, then
R× S = {(r, s)

∣∣ r ∈ R < s ∈ S}
where (r1, s1) + (r2, s2) = (r1 + r2, s1 + s2). and (r1, s1)(r2, s2) = (r1r2, s1, s2)

Corollary. If I1, ..., In are ideals of R such that Ii + Ij = R for i ̸= j. Then

R⋂n
i=1 In

≃
n∏
i=1

R/Ii
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Proof. Define ϕ : R→
∏n
i=1R/Ii by ϕ(r) = (r+ I1, ..., r+ In), and ϕ is a ring homomorphism.

ker(ϕ) = ∩ni=1Ii.

ϕ surjective: ∀(r1 + I1, ..., rn + In) ∈
∏n
i=1R/Ii, by the chinese remainder theorem, ∃x ∈

R such that x+ Ii = ri + Ii, so by the first isomorphism theorem, we get the result. ■

Example. If R = Z, and prime factorization m = pr11 · · · prnn , Ii = prii Z. Then note that
Ii = prii Z, Ii + Ij = Z, and ∩ni=1Ii = mZ. So,

Z/mZ ≃
n∏
i=1

Z/prii Z

as rings. Also,

Zm ≃
n∏
i=1

Zripi

as rings.

2.5 Localization

Suppose R is an integral domain. Consider the equivalence relation a
b ∼

c
d ⇐⇒ ad = bc.

Then, we can mod out by equivalence relationship.

{a
b

∣∣ a, b ∈ R, b ̸= 0}/ ∼

Then we define the ring structure such that for b, d ̸= 0, ab + c
d = ad+bc

bd , ab
c
d = ac

bd . There
are well-defined. The unity is 1

1 , and the zero is 0
1 . This is a commutative ring, and any

non-zero element a
b , a, b ̸= 0 has a multiplicative inverse b

a . Thus we get a field, namely the
field of fraction of R (Quotient field).

Definition. Suppose R is a commutative ring. Then S ⊂ R is a multiplicative subset, where
1 ∈ S and a, b ∈ S =⇒ ab ∈ S, and 0 /∈ S

Example.

• For 0 ̸= r ∈ R, S = {1, r, r2, ...}

• P ⊊ R be a prime ideal and S = R\P . Then a, b /∈ P =⇒ ab /∈ P .

Define S−1R = {(r, s)
∣∣ r ∈ R, s ∈ S}/ ∼. Then consider the equivalence relationship (r, s) ≃

(r′, s′) ⇐⇒ ∃s′′ ∈ S such that s′′(rs′ − sr′) = 0.

If 0 ∈ S, then (r, s) ≃ (0, 0), and everything is 1 equivalence relationship. So from now on, we
assume 0 /∈ S. Then we have ring structure on S−1R, rs +

r′

s′ =
rs′+r′s
ss′ , and r

s
r′

s′ =
rr′

ss′ .

Operations are well-defined: If rs = r0
s0
, then ∃s′′, s′′(rs0 − r0s) = 0. Then I want to check that

r
s + r′

s′ = r0
s0

+ r′

s′ ⇐⇒
rs′+r′s
ss′ = r0s

′+r′s0
s0s′

⇐⇒ · · · = 0. Last step consists of annoying
factorization.

There is a natural ring homomorphism defined by ϕ : R→ S−1R,ϕ(r) = r
1 .

In particular if R is an integral domain (so rs′ = r′s), S−1R is a subring of the field of fractions
of R, which we can write as R ⊂ S−1R ⊂ K, where K is the field of fractions.

25



Note that ϕ : R → S−1R has the property that ϕ(s) is invertible. Namely ∀s ∈ S, ϕ(s) = s
1 ,

so s
1
1
s = 1

1 . And if ψ : R → R′ is a ring homomorphism such that ψ(s) invertible in R′, then
∃!f : S−1R→ R′ such that f ◦ ϕ = ψ [Check video for graph]

R R′

S−1R

ψ

ϕ f

Proposition. Assume R is an integral domain

• If S = R \ {0}, then S−1R is the field of fractions of R.

• If S = {1, f, f2, ..., }where f ∈ R such that fn ̸= 0∀n, Rf = S−1R = { afr

∣∣ a ∈ R, r ≥ 0}.

• If P ⊂ R is a prime ideal and S = R \ P , RP = S−1R = {ab
∣∣ a, b ∈ R, b /∈ P}

• If P ⊊ R is a prime ideal, then Rp is a local ring. i.e. it has a unique maximal ideal. This
unique maximal ideal is defined as {ab

∣∣ a, b ∈ R, b /∈ P, a ∈ P}. If b /∈ P , then there is an
inverse which is not possible since P ⊊ R.

2.6 Principal Ideal Domains (PIDs)

Definition. For integral domain R, an ideal I ⊆ R is principal if it is generated by one element
I = ⟨a⟩ = {ra

∣∣ r ∈ R}. Then R is PID if every ideal is principal.

Example.

• Z is PID. Every ideal generated by some n.

• R[x] is a PID. If I ̸= {0} is an ideal and 0 ̸= f(x) ∈ I has the smallest degree, then
I = ⟨f(x)⟩. If g ∈ I , dividing g by f means that g(x) = q(x)f(x) + r(x). So r(x) or
deg(r) < deg(f). By r(x) = g(x) − q(x)f(x) ∈ I , by degr(x) ≥ degf(x) =⇒ r = 0 =⇒
g ∈ ⟨f⟩.

• R[x, y] is not a PID. ⟨x, y⟩ = {f(x, y)
∣∣ f(0, 0) = 0} not principal.

• Z[x] is not a PID. ⟨x, y⟩ = {f(x)
∣∣ f(0) is even} not principal.

Definition.

• For an integral domain R, a ∈ R is prime if ⟨a⟩ is a prime ideal. Equivalently, a
∣∣ bc =⇒

a
∣∣ b or a

∣∣ c.
• 0 ̸= a ∈ R is irreducible if it is not a unit and if a = xy, then x is a unit or y is a unit.

Proposition. A prime element is irreducible.

Proof. If a is prime and a = xy, then a
∣∣ x or a

∣∣ y, so x = ax′ or y = ay′, so a = ax′y or
a = xay′ =⇒ a(1 − x′y) = 0 or a(1 − xy′) = 0 =⇒ 1 = x′y or xy′, so y is a unit or x is a
unit. ■

Example. Let R = Z[
√
−5] = {a+ b

√
−5

∣∣ a, b ∈ Z} ⊆ C.

It is clear to see that this is closed under multiplication. We claim that 3 ∈ R is irreducible but
not prime. We let 3 = (a+ b

√
−5)(c+ d

√
−5), and define the norm as |a+

√
−5| :=

√
a2 + 5b2.
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Then squaring, 9 = (a2 +5b2)(c2 +5d2). Clearly neither of the values can be 3. so a2 +5b2 = 1
or c2 + 5d2 = 1. Thus (a, b) = (±1, 0) =⇒ (a+ b

√
−5) is a unit, or c+ d

√
−5 is a unit. Thus 3

is irreducible.

But 32
∣∣ (2 +√−5)(2−√−5) =⇒ 3

∣∣ (2 +√−5)(2−√−5). and 3 ∤ (2 +
√
−5) and 3 ∤ 2−

√
−5

since 2 +
√
5 ̸= 3(a+ b

√
−5), for a, b ∈ Z.

Proposition. If R is a PID, then irreducible =⇒ prime.

Proof. Suppose a ∈ R is irreducible, then it suffices to show that a is a prime ideal. Then
the ideal generated by a, (a) ̸= R since a is not a unit. So there is a maximal ideal M where
(a) ⊆M ⊊ R.

Since R is a PID, M = (b) for some b =⇒ (a) ⊆ (b) =⇒ a = bc for some c. (b) ̸= R so b is
not a unit. Since a irredcible, c has to be a unit. So b = c−1a =⇒ b ∈ (a) =⇒ (b) ⊆ (a), so
(a) = (b), so (a) maximal and therefore prime. ■

Proposition. Every prime ideal is maximal in a PID.

Proof. If I = (a) prime, then (a) ⊆ M ⊊ R where M is maximal, then let M = (b) =⇒ a ∈
(b) =⇒ a = bc. a is prime so it is irredcible, so c is a unit. So b ∈ (a) =⇒ (a) = (b) =⇒ (a)
maximal. ■

2.7 Unique Factorization Domains (UFDs)

Definition. Let R be an integral domain. For a, b ∈ R, we say a, b associates if (a) = (b).
Note: (a) = (b) ⇐⇒ a = bu.

Proof. ⇐=: (a) ⊆ (b) and b = u−1a =⇒ (b) ⊆ (a).

=⇒ : a = bx and b = ay =⇒ a = axy =⇒ a(1 − xy) − 0 =⇒ (1 − xy) = 0 =⇒ x is a
unit. ■

Definition. IfR is an integral domain, thenR is a unique factorization domain (UFD) if every
non-zero x ∈ R can be written as a unique product of irreducible elements (up to associates
and reordering).

Example. If x = a1 · · · ar = b1 · · · bm. Then ai, bj all irreducible, and r = m and after
reordering, ai and bj are associate.

Example. For Z, the units are ±1. Prime elements are {±p
∣∣ p prime}. Z is UFD.

Example. Z[
√
−5] is not a UFD.

Proposition. Integral Domain R is a UFD ⇐⇒

1. Every irreducible element is prime.

2. R satisfies the ascending chain condition for principle ideals. Namely, (a1) ⊆ (a2) ⊆
· · · ⊆ (am) ⊆ · · · , and ∃(an) = (an+1) = · · ·
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Proof. =⇒ : First assume R is a UFD.

(1). If a ∈ R irreducible and a
∣∣ bc, so for bc = ax, write b, c, x as a product of irreducible

elements, where b = q1 · · · ql, c = y1 · · · yt, x = x1 · · ·xk. So bc = ax =⇒ q1 · · · qly1 · · · yt =
ax1 · · ·xk. Since R UFD, ∃qi or yi associate to a. Assume WLOG uqi = a for a unit a, so
u−1a = qi

∣∣ b =⇒ b = b′u′a =⇒ a
∣∣ b

(2). (a) ⊆ (b) ⇐⇒ b
∣∣ a. If (a) ⊊ (b), then a = bc, where c is a non-unit. So the number of

irreducible factors of b <number of irreducible factors of a, so there can’t be infinitely many
strict inclusion in the chain.

Conversely, assume (1) and (2) holds. To show the existnece of factorization, let for a not unit
and cannot be written as product of irreducible elements, let S = {(a)}. We want to show
that S is empty using Zorn’s lemma. Since S is a partially ordered set (by inclusion), every
ascending chain has an upper bound, so by Zorn’s lemma, S has a maximal element (a).

Then when a is not a unit and not irreducible (and since (a) ∈ S), so a = bc), where a = bc, b, c
not unit. Thus (a) ⊊ (b) and (a) ⊊ (c) =⇒ (b), (c) /∈ S. So b and c are products of irreducible
elements, so a is a product of irredcible elements, which is a contradiction.

Uniqueness: Suppose a = x1 · · ·xn = y1 · · · ym, where xi, yj irreducible. Then y1
∣∣ x1 · · ·xn

and yi prime =⇒ y1
∣∣ xi for some i. So, xi = uy1 and xi irreducible =⇒ u is a unit, so y1, xi

associates.

■

Theorem. Every PID is a UFD.

Proof. (1) It is proved that every irreducible element is prime.

(2) If (a1) ⊂ (a2) ⊂ · · · . Let I =
⋃
(ai), then I is an ideal. Since R is a PID, we want I = (b).

Since b ∈ I, ∃i such that b ∈ (ai), so (b) ⊆ (ai). But (ai) ⊆ (b), so (ai) = (b), so (ai) = (ai+1) =
(ai+1) = .... ■

Remark: Fields ⊂ Euclidean Rings ⊂ PIDs ⊊ UFDs ⊊ integral domains ⊂ rings.

Definition. If R is an integral domain and a, b ∈ R. Then d is the greatest common divisor of
a, b if

• d
∣∣ a and d

∣∣ b.
• If d′

∣∣ a and d′
∣∣ b, then d′

∣∣ d
Fact: In a UFD, gcd exists.

For a = a1 · · · atat+1 · · · an, b = b1 · · · btbt+1 · · ·m, ai, bj irreducible, we can rearrage it so that
ai, bi associates for 1 ≤ i ≤ t, and otherwise they don’t associate. So gcd(a, b) = a1 · · · at.

Remark: In Z[
√
5], the gcd does not exist.

Fact: In a PID, gcd(a, b) is a “linear combination” of a, b.

If (a, b) = (d), then d
∣∣ a and d

∣∣ b and if d′
∣∣ a and d′

∣∣ b, then (a, b) ⊆ (d′) =⇒ (d) ⊆ (d′) =⇒
d′

∣∣ d
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2.8 Euclidean Domains

Definition. An integral domain R is a Euclidean domain if there is a map d : R \ {0} −→
Z+ such that

• if a, b ∈ R, b
∣∣ a, then d(b) ≤ d(a)

• If a, b ∈ R \ {0},∃t, r ∈ R such that a = tb+ r, where r = 0 or d(r) < d(b)

Example.

• R = Z, d(a) = |a|.

• If R = F [x] where f is a field, then d(f(x))= deg(f).

• For any field F , d(a) = 0 ∀a ∈ F \ {0}.

Proposition. Euclidean domains are PIDs

Proof. If {0} /∈ I ⊊ R is an ideal, then let a ∈ I be a non-zero element with the smallest degree.
We want to claim that I = (a).

If 0 ≤ b ∈ I , we write b = at + r, r = 0 or d(r) < d(a). But r = b − at ∈ I , so d(r) ≥ d(a), so it
has to be that r = 0, so b ∈ (a). ■

Example. Z[i] = {a+ bi
∣∣ a, b ∈ Z} is an Euclidean domain.

Proof. Let d : Z[i]− {0} −→ Z+ be d(a+ bi) = a2 + b2.

d is multiplicative: d((a + bi)(a′ + b′i)) = d((aa′ − bb′) + (ab′ + a′b)i) = (a2 + b2)(a′2 + b′2) =
d(a+ bi)d(a′ + b′i).

(1): If a = bc, where a, b, c ̸= 0, then d(a) = d(b)d(c) ≥ d(b).

(2): Suppose x, y ∈ Z[i] and we want to divide x by y. If y = n ∈ Z+, x = a + bi and I write
a = nq + r, r = 0 or |r| < n and b = nq′ + r, r′ = 0 or |r′| < n

2 . This is possible since if
a = nq + r, n2 ≤ r < n, then a = n(q + 1) + (r − n), |r − n| < n

2 .

Then x = a + bi = (nq + r) + i(nq′ + r′) = n(q + iq′) + (r + ir′), and d(r + ir′) = r2 + r′2 <
n2

4 + n2

4 = n2

2 < n2 = d(n).

Now suppose we are dividing x by an arbitary y, and we use the previous result by letting
n = yȳ = d(y) > 0. So we can divide xȳ by n where

xȳ = qn+ r, d(r) < d(n) =⇒ xȳ = qȳy + r

Then claim that x = qy + (x− qy), where d(x− qy) < d(y). Notice that

d(x− qy)d(ȳ) = d(xȳ − qyȳ) = d(r) < d(n) = d(y)2 =⇒ d(x− qy) < d(y)

Thus, this result holds. ■

Example. This is not unique. 3 = (1+ i)(1− i) + 1, d(1) < d(1− i). Also 3 = (2− i)(1− i)− i,
d(−i) < d(1− i)

Remember that gcd exists in any UFD. So if d = gcd(a, b), then d
∣∣ a, d ∣∣ b and d′

∣∣ a, d′ ∣∣ b =⇒
d′

∣∣ d.
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IF R is a PID, ∃x, y ∈ R, d = ax+ by.

If R is a Euclidean Domain, and a, b ∈ R ̸= 0, I can find the gcd using the following algorithm

a = bq0r0 =⇒ gcd(a, b) = gcd(b, r0)

b0 = r0q1 + r1 =⇒ gcd(b, r0) = gcd(r0, r1)

...
rn+1 = rn+2qn+3 + 0 =⇒ gcd = rn+2

2.9 Polynomial Rings

Definition. For any commutative ring R, we define a polynomial ring

R[x] = {a0 + ...+ anx
n
∣∣ ai ∈ R}

If f(x) = anx
n+ ...+ a1x+ a0, where an is the leading coefficient, n is the degree of f(x), and

a0 is the constant term. If an = 1, then f(x) is monic.

Division Algorithm: If R is an integral domain and non-zero f(x), g(x) with g(x) monic, then
there are unique polynomials q(x), r(x) ∈ R[x] such that f(x) = g(x)q(x) + r(x), where r = 0
or deg(r) < deg(g).

Proof. For existence, let n be degree of f and m be degree of g, proceed by induction on n.

If n = 0, then f(x) = g(x)×0+f(x). deg(f) = 0 < deg(g) if g is non-constant. If g is a constant
= b0 ̸= 0, then a0 = b0

a0
b0

+ 0, so still deg(r) < deg(g). Note that b0 = 1 since g monic.

If the statement holds for deg(f) < n, I can write f(x) = anx
n+ ...+a0, g(x) = xm+ ...+b0. Let

f1(x) = f(x) − anxn−mg(x). Clearly, since deg(f1) < n, by induction hypothesis, I can write
f1(x) = g(x)q1(x) + r1(x), with r1 = 0 or deg(r1) < deg(g). So rewriting,

f(x) = f1(x) + anx
n−mg(x)

= g(x)q1(x) + r1(x) + anx
n−mg(x)

= g(x) q1 + anx
n−m︸ ︷︷ ︸

q(x)

+r1(x)

Uniqueness: f = gpq + r1 = gq2 + r2 =⇒ g(q1 − q2) = r2 − r1. Suppose they are not
equal. Clearlyt deg(r1 − r2) < deg(g). Also, deg(g(q1 − q2) ≥ deg(g) since R is a UFD (so
deg(f) + deg(g) = deg(fg)). This is a contradiction unless both sides are 0, so q1 = q2 and
r1 = r2

■

Remark: If F is a field, the same argument shows for any non-zero f(x), g(x) ∈ F [x].

Corollary. IfR is an integral domain, f(x) ∈ R[x] and a ∈ R. Then f(a) = 0 ⇐⇒ x−a
∣∣ f(x)

Proof. Suppose f(a) = 0. Write f(x) = (x − a)q(x) + r(x), where r = 0 or deg(r) ≤ 0 =⇒
f(a) = r. So f(a) = 0 ⇐⇒ r = 0 ■
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Corollary. If R is an integral domain and f(x) ∈ R[x] has degree n, then f(x) has ≤ n zeros.

Example. It is important for this to satisfy integral domain property. In Z8, f(x) = x2 − 1 has
roots 1, 3, 5, 7

Corollary. If F is a field, F [x] is a Euclidean domain.: d(f(x)) = deg(f). So F [x] is a UFD.

Definition. Let R be a UFD. For non-zero a1, ..., an ∈ R, d = gcd(a1, ..., an) exists, where
an is unique up to associates. Then for f(x) = anx

n + ... + a1x + a0 ∈ R[x], the content of
f(x), c(x) := gcd(an, ..., a1, a0). And f is primitive if c(f) is a unit.

Lemma. c(fg) = c(f)c(g) up to units.

Proof. Case I: Suppose f, g primitive, want to show that fg is primitive. If f = anx
n + ... +

a1x+ a0, g = bmx
m + ...+ b1xb0, then fg = cn+mx

n+m + ...+ c1x+ c0. If fg is not primitive, ∃
prime p ∈ R such that p

∣∣ ci∀i. However, f, g primitive. Suppose i0 is the smallest i such that
p ∤ ai and j0 be the smallest j such that p ∤ bj . Then p ∤ ci0+j0 , where ci0+j0 = a0bi0+j0 + ... +
ai0−1bj0+1 + ai0bj0 + ...+ ai0+j0b0. This is a contradiction.

Case II: Let f, g be arbitrary. Let f = c(f)f1, g = c(g)g1, with f1, g1 primitive so f1g1 primitive.
So fg = c(f)c(g)f1g1 =⇒ c(fg) = c(f)c(g) ■

Lemma. If F is the quotient field of R and f(x) ∈ R[x] is primitive, then f(x) irreducible in
R[x] ⇐⇒ f(x) irreducible in F [x]

Proof. ⇐=: Suppose f(x) not irreducible in R[x], then f(x) = f1(x)f2(x) for f1, f2 non-units
in R[x]. If deg(f1) = 0, then it is a constant c =⇒ f = cf2 =⇒ c

∣∣ f =⇒ c unit since f
primitive, a contradiction.

Then suppose deg(f2), deg(f1) ≥ 1. Since units of F [x] are non-zero constants, f(x) not irre-
ducible.

=⇒ : Suppose f(x) ∈ R[x] can be written as f = f1f2, f1, f2 ∈ F [x], deg(f1, f2) ≥ 1. Write f1 =
bn
cn
xn + ...+ b0c0, bi, ci ∈ R. So if r1 = c1 · · · cn ∈ R, then r1f1 ∈ R[x]. Let g = cf1. Similarly

there is r2 ∈ R such that g2 = r2f2 ∈ R[x] =⇒ g1g2 = r1r2f1f2. So g1 = c(g1)h1, g2 = c(g2)h2
with h1, h2 ∈ R[x] primitive. So c(g1)c(g2)h1h2 = r1r2f =⇒ taking contents, c(g1)c(g2) =
r1r2 up to units.

So ucc(g1)c(g2) = r1r2 for unit u, so uh1h2 = f =⇒ (uh1)h2 = f . Combining with deg(h1) =
deg(g1) = deg(g1) ≥ 1, we have f irreducible in R[x]. ■

Example. f(x) = 2x+ 2 ∈ F [x] is irreducible in Q[x] but not in F [x]

Theorem. If R is a UFD, then R[x] is a UFD.

Proof. Case 1: If f(x) primitive, then f(x) ∈ F [x] can be written as f(x) = f1(x) · · · fn(x),
where fi(x) irreducible in F [x]. ∃bi ∈ R such that bifi(x) = gi(x) ∈ R[x].

Then, let ci = c(gi) =⇒ cihi(x) = bifi(x) for some hi(x) primitive in R[x]. Write this as
fi =

cihi

bi
, so b1 · · · bnf(x) = c1 · · · cnh1(x) · · ·h(x). Therefore, b1 · · · bn = c1 · · · cn up to units, so

c1 · · · cn = ub1 · · · bn, so f(x) = uh1(x) · · ·hn(x)

Uniqueness: If f(x) = p1 · · · pn(x) = q1(x) · · · qm(x), where pi, qj irreducible inR[x]. Then f(x)
primitive =⇒ pi, qj primitive ∀j =⇒ by the lemma, pi, qj irreducible in F [x]∀i, j. Since
F [x] is a UFD, n = m, p− = qj up to reordering and multiplying So pi = ai

bi
qi, a, b ∈ R =⇒
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bipi(x) = aiqi(x) =⇒ by pi, qi primitive that bi = ai up to a unit, bi = uiai =⇒ uipi = qi =⇒
pi = qi up to unit.

Case 2: Let f(x) ∈ R[x] be arbitrary, let c = c(f) =⇒ f(x) = cg(x), where g(x) is primitive.
From case 1, we can write g(x) = g1(x) · · · gn(x), where gi ∈ R[x] irreducible. Then f(x) =
cg1(x) · · · gn(x).

When we factor c in R, c = c1 · · · cm =⇒ f(x) = c1 · · · cmg1(x) · · · gn(x), all irreducible in
R[x].

Uniqueness: Suppose f(x) = f1 · · · fn = g1 · · · gm, where fi, gj ∈ R[x] irreducible. Consider
cases when their degree is 0 and greater than 0. ■

Corollary. If R UFD, then R[x1, ..., xn] is a UFD for n ≥ 1.

2.10 Eisenstein Criterion for Irreducibility

Let R be UFD, f(x) = anx
n · · ·+ a1x+ a0 ∈ R[x], n ≥ 0, an ̸= 0.

Theorem. If p is a prime element in R such that

• p
∣∣ ai, 0 ≤ i < n

• p ∤ an
• p2 ∤ a0

Then, f(x) is irreducible.

Example. x2 + y2 + 1 ∈ C[x, y] is irredcible

Proof. Consider R = C[x] as a UFD and C[x, y] = C[x][y]. Rewrite as y2 + (x+1)(x− i), where
(x + 1)(x − i) irreducible in R = C[x]. We have x + i

∣∣ x2 + 1, x + i ∤ 1, (x2 + 1)2 ∤ x2 + 1 =⇒
x2 + y2 + 1 irreducible. ■

Example. f(x) = xp−1 + xp−2 + · · ·+ x+ 1 ∈ Z[x] is irreducible for p prime.

Proof. Consider f(x+ 1) = (x+ 1)p + (x+ 1)p−2 + ...+ (x+ 1) + 1.

f(x+ 1) =

p∑
i=0

(x+ 1)i

=

p−1∑
i=0

i∑
j=0

(
i

j

)
xj , 0 ≤ i ≤ p− 1, 0 ≤ j ≤ i

=

p−1∑
j=0

p−1∑
i=j

(
i

j

)xj

Set cj =
∑p
i=j

(
i
j

)
, and I claim that p

∣∣ cj , cp−1 =
(
p−1
p−1

)
= 1. Using the identity

(
j
j

)
+ · · ·+

(
m
j

)
=(

m+1
j+1

)
, cj =

(
p
j+1

)
= p!

(j+1)!(p−j−1)! . Also c0 =
(
p
1

)
= 1, so p2 ∤ c0. Therefore by eisenstein

criterion, f(x+ 1) irreducible, so f(x) irreducible. ■
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Proof of Eisenstein Criterion. If f(x) = g(x)h(x) non-units with g(x) = brx
r+· · · b1x+b0, h(x) =

ckx
k + · · · c1x + c0. If deg(g) = 0, g(x) = b0 and b0

∣∣ ai∀i =⇒ since f primitive, b0 is a unit, a
contradiction.

So assume r ≥ 1. Then p
∣∣ a0 = b0c0, p

2 ∤ b0c0 =⇒ either p
∣∣ b0, p ∤ c0 or p ∤ b0, p

∣∣ c0. Also,
p ∤ an = brck =⇒ p ∤ br
Now, let i ≥ 1 be the smallest number such that p ∤ bi, and we have i ≤ r > n. Then
ai = b0ci + bici−1 + ... + bi−1c1 + bic0. However, p

∣∣ ai and p
∣∣ b0ci + bici−1 + ... + bi−1c1 =⇒

p
∣∣ bic0 =⇒ p

∣∣ bi or p
∣∣ c0, both not true. Therefore contradiction. ■
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3 Modules

Definition. Suppose we have arbitrary ring R and abelian group M such that there is R ×
M →M , (r,m) 7→ rm with distributivity. This is a left module, and satisfies the distributivity
below:

• (r + s)m = rm+ sm

• r(m1 +m2) = rm1 + rm2

• (rs)m = r(sm)

• 1Rm = m

Fact: If R is a field, then this is a vector space.

Modules also satisfy the following properties:

• r0M = 0M

• 0Rm = 0M

• (−r)m = −(rm)

Definition. If ∅ ̸= N ⊂ M, then N is a submodule if it is a subspace of M and r ∈ R,n ∈
N =⇒ rn ∈ N .

Example.

• Let R be a ring and R be a module over R. Submodules are (left) ideals in this case.

• Every abelian group is a module over Z. Then submodules correspond to subgroups.

Definition. If M,N are R modules, then f : M → N is a R-homomorphism if f is a group
homomorphism and f(rm) = rf(m)∀r ∈ R,m ∈ M . Note that ker(f) ⊂ M as a submodule,
and im(f) ⊆ N as a submodule.

Remark: If f is an isomorphism, f−1 : N →M is also a R-homomorphism.

3.1 Isomorphism Theorems

If N ⊆M is a submodule, then M/N has the structure of a R-module.

r(m+N) := rm+N

well-defined: Does m+N = m′ +N =⇒ r(m+N) = r(m′ +N)?. yes, because m−m′ ∈ N
and r(m−m′) ∈ N

Isomorphism Theorem 1: If f :M → N is a R-homomorphism, then

M/ ker(f) ≃ im(f) as R-modules

Theorem 2: If N1, N2 are submodules of M , then N1 + N2 := {x + y
∣∣ x ∈ N1, y ∈ N2} is a

submodule of M , and N1 ∩N2 is also a submodule of M , and

N2

N1 ∩N2
≃ N1 +N2

N1
, f : N2 →

N1 +N2

N1
, f(n2) = n2 +N1
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Theorem 3: If N ⊆M and K ⊆ N are submodules, then N/K is a submodule of M/K, and

M/K

N/K
≃M/N

Theorem 4: If N ⊆ M is a submodule, the canonical map M → M/N,m 7→ m +N induces a
1-1 correspondence between submodules of M/N and submodules of M containing N

3.2 Direct Product and Sum of Modules

LetR be an arbitray ring and {Mi}i∈I be a family ofR-modules. The direct product is defined
as ∏

i∈I
Mi = {(xi)i∈I

∣∣ xi ∈M1}, r(xi)i∈I = (rxi)i∈I

Direct Sum is defined
⊕

i∈I Mi = {(xi)i∈I
∣∣ xi ∈Mi, all but finitely zero}

Remark: If M is a module and N1, N2 ⊆M are submodules such that

• M1 ∩M2 = {0}

• M1 +M2 =M

Then M ≃M1 ⊕M2 ≃M, (m1,m2) 7→ m1 +m2.

3.3 Exact Sequences

Definition. Let R be a ring and M,M ′,M ′′ be R-modules. A sequence of R-homomorphism

M ′ f−−→M
g−−→M ′′ is called exact if im(f) = ker(g). More generally, sequenceM1

f1−−→M2
f2−−→

M3 is exact if im(fi) = ker(fi+1).

Example. The sequence 0→M ′ f−−→M , is exact if and only if f is injective.

Example. The sequence M
g−−→M ′′ → 0 is exact if and only if g is surjective

Definition. If 0→M ′ f−−→M
g−−→M ′′ → 0 is an exact sequence, then it is called a short exact

sequence

Example. If N ⊆M is a submodule, 0 −→ N −→M −→M/N −→ 0.

Proposition. Let 0 −→ M ′ f−⇀↽−
ψ
M

g−⇀↽−
ϕ
M ′′ −→ 0 be a short exact sequence of R-modules. Then

the following conditions are equivalent.

1. ∃ R-homomorphism ϕ :M ′′ →M such that g ◦ ϕ = idM ′′

2. ∃ R-homomorphism ψ :M →M ′ such that ψ ◦ f = idM ′

and they imply M ≃M ′ ⊕M ′′. In this case, we say the sequence splits

Example. R = Z4,M = Z4, N = {0, 2}. Then 0 → N → Z4 → Z4/N → 0. Notice that
ψ(1) = 0 =⇒ ψ(2) = 0 and ψ(1) = 2 =⇒ ψ(2) = 0. Therefore this does not split.
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Proof of Proposition. (1) =⇒ (2) : If m ∈ M , then g(ϕ(g(m))) = g(m) =⇒ g(m − ϕ(g(m))) =
0 =⇒ m− ϕ(g(m)) ∈ ker(g) = im(f) =⇒ ∃!x ∈M ′ such that f(x) = m− ϕ(g(m)).

Let ψ(m) = x. We need to check that ψ is a R-homomorphism (exercise), and ψ ◦ f = idM ′ :
if y ∈ M ′, let m = f(y). Then m − ϕ(g(m)) = f(y) − ϕ(g(f(y))︸ ︷︷ ︸

=0

) = f(y). By definition of

ψ : ψ(m) = y =⇒ ψ(f(y)) = y ∀y

(2) =⇒ (1): Suppose x ∈M ′′, then ∃y ∈M such that g(y) = x. Then let ϕ(x) = y − f(ψ(y)).

This is well-defined: If y′ ∈ M such that g(y′) = x. I want to check that y − f(ψ(y)) =
y′ − f(ψ(y′)), or y − y′ = f(ψ(y − y′)). But g(y − y′) = 0. Since ker(g) = im(f), ∃z ∈
M ′ such that y− y′ = f(z) =⇒ f(ψ(y− y′)) = f(ψ(f(z))) = f(z) = y− y′. So ϕ well-defined.

Also g ◦ ϕ = idM ′′ : If x ∈ M ′′, ϕ(x) = y − f(ψ(y)) for some y ∈ M with g(y) = x, so
g(ϕ(x)) = g(y) − g(f(ψ(y))) = g(y) = x, since g ◦ f = 0. Also ϕ is a R-homomorphism, since
∀r, s ∈ R, x1, x2 ∈M ′′, ϕ(rx1 + sx2) = rϕ(x1 + sϕ(x2)).

Direct Sum: Define
M ′ ⊕M ′′ α−−→M, (x, y) 7→ f(x) + ϕ(x)

M
β−→M ′ ⊕M ′′,m 7→ (ψ(m), g(m))

Then β ◦ α(x, y) = β(f(x) + ϕ(y)) = (x, y), since ψ ◦ ϕ = 0 (Show this as an exercise:) ■

3.4 Module Homomorphism

Definition. Let M,N be R-module, with HomR(M,N) being the set of R-homomorphism
f :M −→ N , and HomR(M,N) has the structure of an R-module.

Let f, g ∈ HomR(M,N) if f + g ∈ HomR(M,N). Note (rf)(m) = rf(m), (f + g)(m) =
f(m) + g(m). We have

HomR(M,N)
−◦f−−−→ HomR(M

′, N)

HomR(N,M
′)

f◦−−−−→ HomR(N,M)

M ′ M

N ′ N

f

gg′

Lemma. If 0 −→ M ′ f−→ M
g−→ M ′′ → 0 is a short exact sequence of R-modules and N is a

R-module, then

(1). 0→ HomR(N,M
′)

ψ−→ HomR(N,M)
ϕ−→ HomR(N,M

′′) exact

(2). 0 −→ HomR(M
′′, N) −→ Hom(M,N) −→ Hom(M ′, N) exact

Proof.

M ′ M M ′′

N ′

f g

f◦α=β
α

g◦β
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HomR(N,M
′)→R Hom(N,M) injective: If f ◦ α = 0 for some α ∈ HomR(N,M

′), then since
f injective, α = 0.

ϕ ◦ ψ = 0( =⇒ im(ψ) ⊂ ker(ϕ)) : If α ∈ HomR(N,M
′), then ϕ ◦ ψ(α) = g ◦ f ◦ α = 0, where

g ◦ f = 0 since it is exact.

If β ∈ ker(ϕ), then g ◦ β = 0, so for any x ∈ N, g(β(x)) = 0, so β(x) ∈ im(f) =⇒ there is a
unique y ∈ M ′ such that f(y) = β(x). Let α : N → M ′ be defined by α(x) = y, then α is a
R-homomorphism (Exercise). And clearly β = f ◦ α, so β ∈ im(ψ) ■

Remark: If M ′ ⊆M is a submodule, then 0→M ′ →M →M/M ′ is a short exact sequence. If
g : M → M ′′ is a surjective R homomorphism, then 0 → ker(g) → M → M ′′ → 0 is a short
exact sequence.

3.5 Free Module

Definition. If M is a R-module, and S ⊂ M is a basis if ∀m ∈ M,m = r1s1 + ... + rksk in a
unique way with r ∈ R, s ∈ S. Equivalently, if 0 = r1s1 + ... + rksk, then r1 = ... = rk = 0. If
{si}i∈I is a basis for M , then M ≃

⊕
i∈I R. Then, M is free is it has a basis.

Definition. If R is a ring and P is a R-module, then P is a projective module if it satisfies the
following:

1. If g, ϕ are R homomorphism, ∃ψ : P →M , R-homomorphism such that g ◦ ψ = ϕ

P

M M ′′ 0

ϕ
∃ψ

g

2. If 0→M ′ →M → P → 0 is exact, then it splits.

3. There is a R-module N such that N ⊕ P is a free module.

4. If 0→M ′ →M →M ′′ is exact, then

0→ Hom(P,M ′)→ Hom(P,M)→ Hom(P,M ′′)→ 0

is exact.

(1) =⇒ (2). If 0→M ′ →M → P → 0 is exact, then by (1) ∃ψ : P →M such that g◦ψ = idP ,
so the sequence splits

P

M P 0

idP∃ψ
g

■

(2) =⇒ (3). Let {xi}i∈I be a generating subset of P as a R-module. Then, g :
⊕

i∈I R →
P, (ri)i∈I 7→

∑
i∈I rixi. is surjective. Then, 0 → ker(g) →

⊕
i∈I R → P → 0 is a short exact

sequence. By (2) this splits, so free R-module
⊕

i∈I R ≃ ker(g)⊕ P . ■
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(3) =⇒ (4). It is enough to show that Hom(P,M) → Hom(P,M ′′) is surjective. If P is free
and (xi)i∈I is a basis for P and let yi = ϕ(xi) and zi ∈ m such that g(zi) = yi. Then let
ψ(xi) = zi and ψ(

∑
rixi) =

∑
rizi. Then g ◦ ψ = ϕ. If N

⊕
P is free, then ϕ̃(r, p) = ϕ(p) is a

R homomorphism, ∃ψ̃ : N ⊕ P → M such that g ◦ ψ̃ = ϕ̃. Define ψ : P → M,ψ(p) = ψ̃(n, p),
then g ◦ ψ = ϕ.

P

M M ′′

ϕ
ψ

g

=⇒
Q = N ⊕ P

M M ′′

ϕ̃
ψ̃g

■

(4) =⇒ (1). The surjective map g : M → M ′ gives a short exact sequence 0 → ker(g) →
M →M ′′ → 0. So by (4) there is a surjective map Hom(P,M ′′)→ Hom(P,M). This is exactly
1. ■

Example. R = Z6. Let Z6 be a Z6-module and I1 = {0, 3}, I2 = {0, 2, 4}. Then I1 ∩ I2 = {0}
and I1 + I2 = Z6 =⇒ Z6 = I1 + I3. So by 3, I1, I2 are projective modules but not free.

3.6 Finitely Generated Modules over PIDs

Theorem. If R is a PID and M is a finitely generated module over R, then

M ≃ R⊕ · · · ⊕R⊕ R

pn1
1

⊕ · · · ⊕ R

pnk

k

where p1, ..., pk are irredcible (prime) elements ofR. In particular, finitely generated projective
modules are free over R.

Let R be an integral domain and M be a R-module, m ∈ M . m is torsion if there is 0 ̸= r ∈
R such that rm = 0. So let Mtor be set of torsion elements in M , so Mtor is a submodule,
where m1,m2 ∈ Mtor =⇒ m1 +m2 ∈ Mtor. M is torsion if M = Mtor, and if torsion-free if
Mtor = {0}. Free modules are torsion-free.

Recall that for abelian groups, torsion free does not imply free, take Q as example. Meanwhile,
torsion free and finitely generated implies free group.

However in arbitrary integral domain, torsion free and finitely generated does not imply free
group. One example would be R = C[x, y],M = (x, y) [proof of example not written down]

Fact: Suppose R is a PID

• A submodule of a finitely generated R-module is finitely generated

• If M is finitely generated R-module, then M ≃Mtor ⊕N for a free R-module N .

Note, making it a PID makes everything similar to Z

3.7 Tensor Products

Let R be a ring and M,N be R-modules. Let F be a free module generated by elements
(m,n),m ∈ M,n ∈ N. F = {r1(m1, n1) + ... + rk(mk, nk)

∣∣ ri ∈ R,mi ∈ M,ni ∈ N}. D is the
submodule of F generated by elements of the forms below
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• (m1 +m2, n)− (m1, n)− (m2, n),

• (m,n1 + n2)− (m,n1)− (m,n2)

• (rm, n)− r(m,n)

• (m, rn)− r(m,n)

with r ∈ R,m,m1,m2 ∈M,n, n1, n2 ∈ N .

Let T := F/D be an R-module. Note there is a map α : M ×N −→ T, α(m,n) = (m,n) +D.
This map is bilinear: α(r1m1 + r2m2, n) = r1α(m1, n) + r2α(m2, n) and α(m, r1n1 + r2n2) =
r1α(m,n1) + r2α(m,n2)

Proof of above requires us to show (r1m1 + r2m2, n) − r1(m1, n) − r2(m2, n) ∈ D. Rewrite
expression into ((r1m1+r2m2, n)−(r1m1, n)−(r2m2, n))+((r1m1, n)−r1(m1, n))+((r2m2, n)−
r2(m2, n))

M ×N Q

T

ϕ

α ∃!ψ

T has the following universal property: If Q is a R-module and ϕ : M × N −→ Q is a bilin-
ear map, then there is a unique R-homomorphism ψ : T → Q with ϕ = ψ ◦ α, and define
ψ((r1(m1, n1) + ...+ rk(mk, nk)) +D) = r1ϕ(m1, n1) + ...+ rkϕ(mk, nk).

We need to check that ψ is well-defined and is a R-homomorphism. For well-defined, it suf-
fices to show that elements ∈ D.

We denote tensor product of M and N as M ⊗R N = T = F/D. Any element is of the form

r1(m1, n1) + ...+ rk(mk, nk) +D = (r1m1, n1) + ...+ (rkmk, nk) +D︸ ︷︷ ︸
:=r1m1⊗n1+...+rkmk⊗nk

Proposition. The following properties are satisfied:

1. m⊗ (n1 + n2) = m⊗ n1 +m⊗ n2
2. (m1 +m2)⊗ n = m1 ⊗ n+m2 ⊗ n

3. (rm)⊗ n = r(m⊗ n) = m⊗ (rn)

4. 0⊗ n = 0 = m⊗ 0

Example.

• Zp ⊗Z Q = {0}: a⊗ b
c = a⊗ bp

cp = pa⊗ b
cp = 0⊗ b

cp = 0.

• Z2⊗Z3 = {0} : 0⊗x = 0, 1⊗0, 2 = 0. Finally 1⊗1 = 1⊗(2+2) = 2⊗1+2⊗1 = 0+0 = 0.

• gcd(m,n) = 1,Zm ⊗Z Zn = {0}

Proposition. If M,N,P are R-modules, then

• M ⊗R N ≃ N ⊗RM

• (M ⊗R N)⊗R P ≃M ⊗R (N ⊗R P )
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• M ⊗R (N ⊕ P ) ≃M ⊗R N
⊕
M ⊗R P

• M ⊗R R ≃ R⊗RM ≃M

Proposition 1 Proof. M ×N α−→ N ⊗M is clearly bilinear, (m,n) 7→ n⊗m

M ×N N ⊗M

M ⊗N

α

∃!ψ

By the universal property, we have R-homomorphism ψ(m ⊗ n) = α(m,n) = n ⊗ m. Con-
versely, ∃R-homomorphism ϕ : N ⊗M → M ⊗N , and n ⊗m 7→ m ⊗ n, and ϕ ◦ ψ and ψ ◦ ϕ
are identity maps. ■

Proposition 2 Proof. Fix m ∈ M and define αm : N × P → (M ⊗ N) ⊗ P, (n, p) 7→ (m ⊗
n) ⊗ p. Then, αm is bilinear: αm(n, p1 + p2) = αm(n, p1) + αm(n, p2). αm(n1 + n2, p) =
αm(n1, p) + αm(n2, p). αm(m, p) = rαm(n, p). αm(n, rp) − rαm(n, p). Together, this implies
that ∃R-homomorphism ψm : N ⊗ P −→ (M ⊗N)⊗ P .

Now, we have a bilinear map ψ : M × (N ⊗ P ) → (M ⊗N) ⊗ P,ψ(m,x) = ψm(x) and show
that this is bilinear.

• ψ(m,x1 + x2) = ψ(m,x1) + ψ(m,x2)

• ψ(m, rx) = rψ(m,x)

So ψm is a R-homomorphism. Also ψ(m1 + m2, x) = ψ(m1, x) + ψ(m2, x) and ψ(rm, x) =
rψ(m,x) so ψm1+m2

= ψm1
+ ψm2

.

Since there is a bilinear map, ∃R-homomorphism γ :M⊗(N⊗P )→ (M⊗N)⊗P,m⊗(n⊗p) =
(m⊗ n)⊗ p.

Similarly, there is aR−homomorphism β : (M⊗N)⊗P =M⊗(N⊗P ), (m⊗n)⊗p 7→ m⊗(n⊗p).
γ, β are inverse maps, so they are isomorphisms. ■

Proposition 4 Proof. There is a binear map M × R α−→ M, (m, r) 7→ rm bilinear. So there is an
R-homomorphism ψ :M ⊗R→M,m⊗ r 7→ rm. Also there is an R-homomorphism ϕ :M →
M ⊗R,m 7→ m⊗1. ψ ◦ϕ = id, ϕ◦ψ(m⊗ r) = ϕ(rm) = rm⊗1 = m⊗ r =⇒ ϕ◦ψ = id =⇒ ϕ
isomorphism. ■

Example. Consider R[x]⊗RR[x], where R is a commutative ring, we claim that R[x]⊗R[x] ≃
R[x, y].

Let ϕ : R[x] ⊗R r[x] → R[x, y] be the R-homomorphism induced by the bilinear map R[x] ×
R[x] −→ R[x, y], (f(x), g(x)) 7→ f(x)g(y).

To define ψ, note that R[x, y] is a free module over R with basis xiyj , 0 ≤ i, j. Let ψ : R[x, y]→
R[x]⊗R R[x] be such that ψ(xiyj) = xi ⊗ xj .

ϕ, ψ are inverse maps: xiyj
ψ−→ xi⊗xj ϕ−→ xiyj , f(x)⊗g(x) =

∑
i,j ci,jx

i⊗xj , xi⊗xj ϕ−→ xiyj
ψ−→

xi ⊗ xj .
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Proposition. Let 0→M ′ →M →M ′′ → 0 be a short exact sequence of R-modules, and let N
be an R module, then

M ′ ⊗R N →M ⊗R N →M ′′ ⊗R N → 0

is exact. Here, M ′ f−→M induces M ′ ⊗N f⊗id−−−→M ⊗N ,
∑
m′
i ⊗ ni 7→

∑
f(m′

i)⊗ ni.

Lemma. Let M,N,Q be R modules, then HomR(M ⊗R N,Q) ≃ HomR(M,HomR(N,Q)).

Corollary. If Q = R, (M ⊗R N)∨ ≃ HomR(M,N∨).

Example. Let k be a field, R = k[x, y]/(x, y),M = R/(x), N = R/(y). Then, M ⊗R N =
R/(x)⊗R(y) ≃ R/(x, y). Also, (M ⊗R N)∨ ≃ (R/(x, y))∨ = HomR(R/(x, y), R) = {0}.

Also, M∨ = Hom(R/(x), R) ≃ M,N∨ = Hom(R/(y), R) ≃ N . Consider ϕ : R/(x) → R, 1 7→
f̄ , 0 = x̄ 7→ xf = 0, f ∈ k[x, y] =⇒ xf ∈ (xy) =⇒ f ∈ (y).

So M∨ ⊗N∨ ≃M ⊗N ≃ R/(x, y) ̸= {0}.

Proposition Proof using Lemma. If M ′ → M → M ′′ → 0 is exact, then let Q be an arbitrary
R-module and take Hom(−, HomR(N,Q)). Then we have exact sequence

0→ Hom(M ′′, HomR(M
′′, Q))→ HomR(M,HomR(N,Q))→ HomR(M

′
,Hom(N,Q))

So we have an exact sequence

0→ HomR(M
′′ ⊗N,Q)→ HomR(M ⊗N,Q)→ HomR(M

′ ⊗N,Q)

So by homework 9 question, M ′ ⊗R N →M ⊗R N →M ′′ ⊗R N → 0 is exact. ■

Example. Let 0 → Z f−→ Z → Z2 be a short exact sequence of Z-modules and tensored with
Z2, where f : a 7→ 2a.

Then, Z⊗ Z2︸ ︷︷ ︸
≃Z2

→ Z⊗ Z2. [fill in from notes]

Proof of Lemma. Define ϕ : HomR(M ⊗R N,Q) → HomR(M,HomR(N,Q)), where (α : M ⊗
N → P ) 7→ (β :M → HomR(N,Q)). β : m 7→ βm, β(n) = α(m⊗ n) ∈ Q.

I need to show that β is R-homomorphism, ϕ is R-homomorphism.

β homomorphism: β ∈ HomR(M,HomR(N,Q)) : Show that βr1m1+r2m2
= r1βm1

+r2βm2
. So,

βr1m1+r2m2(n) = α((r1m1+r2m2)⊗n) = α(r1(m1⊗n)+r2(m2⊗n)), and (r1βm1+r2βm2)(n) =
r1α(m1 ⊗ n) + r2α(m2 ⊗ n), which is true

ϕ homomorphism shown similarly.

Also define ψ : HomR(M,HomR(N,Q)) → HomR(M ⊗R N,Q) with β : M → HomR(N,Q)
given. Define bilinear mapM×N → Q, (m,n) 7→ β(m)(n), this gives a map α :M⊗RN → Q.

So ϕ, ψ are inverse maps. ■

Definition. A module F is flat if for any short exact sequence 0→ M ′ f−→ M
g−→ M ′′ → 0, the

following sequence is exact:

0→M ′ ⊗ F f⊗id−−−→M ⊗ F g⊗id−−−→M ′′ ⊗ F → 0
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Equivalently, F is flat if for anyR-homomorphism f :M ′ →M,M ′⊗F →M⊗N is injective.

Example. Z2 is not a flat Z-module. Consider Z → Z, n 7→ 2n. Z ⊗ Z2 → Z ⊗ Z2, a ⊗ b 7→
2a⊗ b = a⊗ 2b = 0. Not injective, so this is not flat.

Example. Suppose R is an integral domain:

• Free modules are flat. If F is a free R-module, F ≃
⊕

i∈I R, f : M ′ → M is an injective
map that gives the following injectvitiy.

M ′ ⊗ F

M ⊗ F

f⊗id ≃
M ′ ⊗ (

⊕
iR)

M ⊗ (
⊕

iR)

f⊗id ≃

⊕
iM

′ ⊗R

⊕
iM ⊗R

⊕
f⊗id ≃

⊕
iM

′

⊕
iM

⊕f

• More generally, projective modules are flat. If P is projective, ∃P ′ such that for a free
module F , F = P ⊕ P ′. Then if M ′ → M is injective, then M ′ ⊗ F → M ⊗ F by the
previous example. So M ′ ⊗ P

⊕
M ′ ⊗ P ′ −→ M ⊗ P

⊕
M ⊗ P ′ is an injective map

=⇒ M ′ ⊗ P →M ⊗ P is injective.

• Flat module does not necessarily imply projective modules. Q as a Z-module is flat.
[Check 11/29 minute 30 for proof] But Q is not projective. Suppose Q ⊕ P ′ is free, then
pick a basis and write (1, 0) = λ1x1+...+λnxn, x1, ..., xn part of a basis and λ1, ..., λn ∈ Z.
Pick N where N > |λ1|, ..., |λn|. Then write ( 1

N , 0) as a combination of basis elements,
where ( 1

N , 0) = c1x1 + ...+ cnxn, where c1, ..., cn ∈ Z may be 0. So (1, 0) = Nc1x1 + ...+
Ncnxn. If ci ̸= 0, then |Nci| > |λi|, so they cannot be equal.

• If F is a flat R-module, then it is torsion-free. We need to show that if 0 ̸= x ∈ F and
0 ̸= r ∈ R, then rx ̸= 0. Let R

f−→ R, s 7→ rs be multiplication by r. Then f is injective

sinceR is an integral domain. So,R⊗F f⊗id−−−→ R⊗F is injective. 0 ̸= 1⊗x 7→ r⊗x = 1⊗rx.
So 1⊗ rx ̸= 0, rx ̸= 0

Note: Free =⇒ Projective =⇒ Flat =⇒ Torsion-free

Let R
f−→ S be a ring homomorphism.

• Any S-module M has the structure of an R-module, rm : f(r)m

• Now, suppose N is a module over R. N ⊗R S is a R-module which has the structure of
S-module, s(n1 ⊗ s1) := n1 ⊗ ss1

If ϕ : N1 → N2 is a R-homomorphism, ϕ⊗ id : N1 ⊗ S → N2 ⊗R S is a S-homomorphism.
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4 Category Theory

Definition. A category C consists of a collection (class) of objects Obj(C). For any two objects
A,B of C, a set of morphisms HomC(A,B) satisfies for any object A ⊂ Obj(C), there is a
morphism 1A ∈ HomC(A,A) and a composition function HomC(A,B) × HomC(B,C) −→
HomC(A,C), (f, g) 7→ gf . which is associative: (hg)f = h(gf), f1A = f, 1Bf = f .

A
f−→ B

g−→ C
h−→ D

Example.

• C is a category of sets Obj(set), and Homset(A,B) are functions from A to B.

• Let S be a set with a relation ∼ that is reflexive and transitive, and C is a category obj(C).
HomC(a, b) = ϕ if a ̸∼ b and {(a, b)} if a ∼ b.

a ∈ obj(C), 1a = (a, a) with composition (a, b) ∈ Hom(a, b), (b, c) ∈ Hom(b, c) therefore
(b, c)(a, b) = (a, c).

• Let C be a category, A ∈ Obj(C) and CA be a new catory, where objects are morphism
from any object of C to A.

HomCA
(f, g) = {σ ∈ HomC(B,C)

∣∣ gσ = f}

and HomCA
(f, g) × HomCA

(g, h) → HomCA
(f, h), (σ, α) 7→ ασ. So h(ασ) = (hα)σ =

gσ = f , and 1Bf = f .

4.1 Morphisms

Definition. Let C be a category, f ∈ HomC(A,B). Then f is an isomorphism if it has a two-
sided inverse under composition with g ∈ Hom(B,A) so that gf = 1A, fg = 1B . This inverse
is unique, and is denoted by f−1.

This has the properties that

• (1A)
−1 = 1A

• (fg)−1 = g−1f−1

• (f−1)−1 = f

Example.

• If C is a set, then isomorphism are bijections.

• ∼ on S: (a, b) is an isomorphism ⇐⇒ b ∼ a

Definition. f ∈ HomC(A,B) is a monomorphism if ∀C ∈ Obj(C) and g1, g2 ∈ HomC(A,C)
with fg1, fg1, we have g1 = g2.

Definition. f is an epimorophism if ∀C ∈ Obj(C), h1, h2 ∈ HomC(B,C) with h1f = h2f , we
have h1 = h2

Example.

• For C a set, a monomorphism is injective and epimorphism is surjective.

• For S,∼, all morphisms are monomorphism and epimorphism.
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4.2 Initial and Final Objects

Definition. For category C, I ∈ Obj(C) is initial if for any A ∈ Obj(C), HomC(I, A) has one
element. F ∈ Obj(C) is final if for any A ∈ Obj(C), then HomC(A,F ) has one element.

Example.

• For C a set, ∅ is the initial object, any singleton set is a final object.

• For (S,∼) with (Z,≤), there is no initial or final object.

Note: Initial and final objects are unique up to isomorphism.

Example.

• For category of sets, initial object is ∅ and final object is singleton set.

• For category of groups, initial object is {e} and final is also {e}.

• For category of rings, intial object is Z, final object is {0}.

• For category of R-modules, initial element is {0} and final is {0}.

• For category of fields, there are no initial and final objects

Definition. A category C is a groupoid if every morphism is an isomorphism.

Example. If ∼ on S is an equivalence relation,

a b

(a b)

(b a)

Definition. If A ∈ Obj(C) isomorphisms ∈ Hom(A,A) are automorphism, they form a group
denoted by Aut(A)

Fact: A group is a groupoid of 1 object!

4.3 Product and Coproduct

Definition. Let C be a category with A,B ∈ Obj(C). Z is a product of A,B if ∃f ∈
Hom(Z,A), g ∈ Hom(Z,B) such that ∀C ∈ Obj(C), σ1 ∈ Hom(C,A), σ2 ∈ Hom(C,D),∃!ϕ ∈
Hom(C,Z) such that f ◦ ϕ = σ1, g ◦ ϕ = σ2

A

C Z

B

∃!ϕ

σ1

σ2

f

g
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Definition. It is a coproduct is the following diagram commutes:

A

Z C

B

f σ1

∃ψ

g σ2

If product (coproduct) of A,B then it is unique up to isomorphism. If Z,Z ′ coproduct ψ : Z →
Z ′, ϕ : Z→ Z (replace C with Z ′ from above). Then ϕ ◦ σ2 = g, ψ ◦ g = σ2.

Example. For set A,B, A×B is the product and the coproduct is the disjoint union A⊔B. By
definition, {1, 2} ⊔ {2, 3} = {1, 2, 2′, 3}.

Example. For groupsG1, G2, the product isG1×G2 and the coproduct is free productG1 ∗G2

(Note that G1 ×G2 is only coproduct when it is abelian.)

fill in examples from written notes

4.4 Functors

Definition. Suppose C and D are categories and F : C → D is a covariant functor if ∀A ∈
Obj(C), F (A) ∈ Obj(C) and a function HomC(A,B)→ HomD(F (A), F (B)) such that

• F (1A) = 1F (A). A
β−→ B

α−→ Z

• F (αβ) = F (α)F (β). F (A)
F (β)−−−→ F (B)

F (α)−−−→ F (Z)
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