MATH5031 Algebra

Albert Peng

February 2, 2024

FL2023 with Prof. Roya Beheshti Zavareh

Contents

1 Groups

Definition. G is a non-empty set with a binary associate operation ∗ is a **group** if

- There is an *identity element* $e, a * e = e * a = a \forall a \in G$
- Every element has an *inverse*. $\forall a \in G$, $\exists a^{-1} \in G such that $a \cdot a^{-1} = a^{-1} \cdot a = e$$

Note: Identity and inverse elements are unique.

If $n \geq 1$, $a^n = a * a * ... * a$ for *n* times. Similar follows for a^{-n} . Also $a^0 = e$.

Definition. *G* is called **abelian** if $ab = ba\forall a, b \in G$.

Example. Non Abelian Group: $GL(n, \mathbb{R})$ of $n \times n$ matrices with real entries with matrix multiplication.

A non-empty subset $H \subseteq G$ is a **subgroup** if it is itself a group with the induced operation.

- $e \in H$
- $a \in H \implies a^{-1} \in H$
- $a, b \in H \implies ab \in H$

Fact: A non-empty subset H is a subgroup iff $a, b \in H \implies ab^{-1} \in H$.

Notation: $H \leq G$.

If $X \subset G$ is a subset, the subgroup generated by X , $\lt X \gt := \bigcap_{H \leq G, X \subseteq H} H$

If $X = a, < a> = \{a^n \mid n \in \mathbb{Z}\}\$

1.1 Cosets

Definition. Let $H \leq G, g \in G$. The **right coset** of H in G generated by g is : $Hg = \{hg \mid h \in G\}$ *H*}. Left cosets are defined similarly, where $gH = \{gh \mid h \in H\}$.

Facts: $Hg_1 = Hg_2 \iff H = Hg_2g_1^{-1} \iff g_2g_1^{-1} \in H$. Similarly, $g_1H = g_2G \iff Hg_2$ $g_1^{-1}g_2H = H \iff g_1^{-1}g_2 \in H.$

Corollary. If $Hg_1 \neq Hg_2$, then $Hg_1 \cap Hg_2 = \emptyset$

Proof. Let $a = Hg_1 \cap Hg_2 \implies a = h_1g_2 = h_2g_2$. Then $h_2^{-1}h_1 = g_2g_1^{-1} \implies g_2g_1^{-1} \in H \implies$ $Hg_1 = Hg_2.$

Similarly, if $g_1H \neq g_2H$, then $g_1H \cap g_2H = \emptyset$

Example. A right coset is not necessarily a left coset. One example would be S_n the group of permutation of $1, \ldots, n$.

Definition. An operation f is **injective**, or **one-to-one** on a set S if $\forall s_1, s_2 \in S, f(s_1) =$ $f(s_2) \implies s_1 = s_2.$

Definition. An operation f is **surjective**, or **onto** on for $f : X \rightarrow Y$ if $im(f) = Y$. In other words, $\forall y \in Y, \exists x \in X$ such that $f(x) = y$.

If X is a set and S_X is the set of **bijections** $f : X \to X$, then there is a group under composition of function, namely the group of permutations of X .

Fact: There is a bijection between the set of distinct left cosets of H and distinct right cosets of $H: aH \longleftrightarrow Ha^{-1}.$

Proof. $aH = bH \iff a^{-1}b \in H \iff (a^{-1}b)^{-1} \in H \iff b^{-1}a \in H \iff Ha^{-1} = Hb^{-1}$ ■

Definition. The **index** if H in G, $[G : H]$ is the number of distinct right (left) cosets of H in G.

If $|G| < \infty$, then $|G| = [G : H] \cdot |H|$. ($|Hg| = |H|$). In particular, $|H| \cdot |G|$

If $K \leq H \leq G$ and if $[G:H], [H:K] < \infty$, then $[G:K] < \infty$ and $[G:K] = [H:K][G:H]$.

Exercise: Prove this. $a_iH, i \in I, b_jK, b_j \in H, j \in J \implies a_ib_jK$ give all the cosets of K in G. Hint: (Was in homework last semester)

Definition. For $g \in G$, g has **finite order** if $\exists n \ge 1$ such that $g^n = e$, and ord (g) is the smallest such n. So ord (g) means that $g >$ is a subgroup of order n. And if $|G| < \infty$, then $\text{ord}(g) | |G|$.

Definition. *G* is **cyclic** if $\exists g \in G$ such that $G = \langle g \rangle$.

If $|G| = p$, p prime, then G is cyclic: If $G \neq \{e\}$, then $e \neq g \in G$, then $\langle g \rangle \leq G$, so $1 \neq |< g> | \mid p \implies |< g> | = p.$

If G is cyclic, then every subgroup H of G is cyclic

Proof. $H \leq G$, and let r be the minimum positive integer such that $g^r \in H$, then $H = \langle g^r \rangle$, so for $g^m \in H, m = rq + r_0$.

Proposition. If G is a cyclic group of order *n*, then for any divies $d \mid n$, there is a unique subgroup of order d.

Remark: $|A_4| = 12$ has no subgroup of order 6.

1.2 Normal Subgroups

Definition. Let $H \leq G$ is **normal** if $\forall g \in G, gHg^{-1} \subseteq H$. Note that $gHg^{-1} = \{ghg^{-1}|h \in H\}$ H } $\leq G$.

Proof. $ghg^{-1}(gh'g^{-1})^{-1} \in gHg^{-1}$

Example.

- Every subgroup of an abelian group is normal
- $SL(n,\mathbb{R})$, real matrices with det=1, is a normal subgroup of $GL(n,\mathbb{R})$, invertible matrices.

•

Obviously for $A \in GL(n, \mathbb{R}), B \in SL(n, \mathbb{R})$, $det(ABA^{-1}) = det(A)det(B)det(A^{-1}) = 1$

We denote *H* normal in *G* as $H \trianglelefteq G$.

If $H \leq G$, then the following are equivalent.

- 1. $H \triangleleft G$
- 2. $qHq^{-1} = H \,\forall\, q \in G$
- 3. $gH = Hg \,\forall\, g \in G$
- 4. Every right coset of H is a left coset
- 5. Every left coset of H is a right coset

Proof of 4 implies 3: Suppose $Hg = aH$ for some a. But then $g \in Hg = aH$, and $g \in gH$. So $aH = gH \implies Hg = gH.$

Proof of 1 implies 2: $gHg^{-1} \subseteq H \ \forall g \in G$, so $(g^{-1}H(g^{-1}))^{-1} \subseteq H \implies g^{-1}Hg \subseteq H$. Multiply from left and right to cancel, so $H = \subseteq gHg^{-1}$. So $gHg^{-1} = H$

Corollary. Any subgroup of index 2 in any group G is normal.

Proof. $[G : H] = 2 \implies$ two distinct left cosets, H, aH where $a \notin H$. Similarly, H and Ha are distinct right cosets. This $H \cap aH = \emptyset$, $H \cap Ha = \emptyset$, so by 4, H is normal.

1.3 Quotient (Factor) Groups

If $N \triangleleft G$, then the set of cosets of N in G, G/N , form a group under $(aN)(bN) = abN$. We need to check that

- Well-defined: $aN = a'N$ and $bN = b'N \implies abN = a'b'N$.
- Group properties easily follow from the group properties of G

So $a^{-1}a', b^{-1}b' \in N$. (add from notes)

Notation: This group is denoted as G/N .

Example. $SL(n, \mathbb{R}) \trianglelefteq GL(n, \mathbb{R})$. Then $GL(n, \mathbb{R})/SL(n, \mathbb{R}) \longleftrightarrow \mathbb{R} - \{0\}$, and $A \cdot SL(n, \mathbb{R}) \rightarrow$ $\det(A)$

1.4 Group Homomorphisms

Definition. Let G, G' be a group. $\phi : G \to G'$ is a **homomorphism** if $\phi(ab) = \phi(a)\phi(b)$ for all $a, b \in G$. *f* is an **isomorphism** if the homomorphism is injective and surjective.

<u>Facts:</u> If ϕ : $G \to G'$ is a homomorphism, then

- $\bullet \phi(e_G) = e_{G'}$
- $\phi(a^{-1}) = (\phi(a))^{-1}$
- ker $(\phi) := \{a \in G | \phi(a) = e_{G'}\} \trianglelefteq G$
- $\operatorname{im}(\phi) := \{\phi(a) | a \in G\} \leq G'$

Proof. From video

Example. Let \mathbb{Z}_n be the group of integers mod n. Then any cylic group of order n is isomorphic to \mathbb{Z}_n . In particular for $G=<\tilde{g}>$, we define $\phi:G\to \mathbb{Z}_n$, $\phi(g^i)=[\tilde{i}]$.

1.5 Isomorphism Theorems

1st IsomorphismTheorem. If $f : G \to G'$ is a group homomorphism, then

$$
G/\ker(f) \simeq im(f)
$$

Proof. Define ϕ : $G/\ker(f) \to im(f)$ by $\phi(a \ker(f)) = f(a)$.

 ϕ is well-defined and injective: $a \text{ ker}(f) = b \text{ ker}(f) \iff a^{-1}b \in \text{ker}(f) \iff f(a^{-1}b) = e$. So $f(a^{-1})f(b) = e \implies f(b) = f(a).$

 ϕ homomorphism: $\phi(a \ker(f)b \ker(f)) = \phi(ab \ker(f))$ since kernel is normal group and that is $f(ab)$. On the other side, $\phi(a \text{ker}(f))\phi(b \text{ker}(f)) = f(a)f(b)$, so this is homomorphism since f is homomorphism

 ϕ surjective: If $b \in im(f)$, then $b = f(a)$ for some a. So $\phi(a \ker(f)) = b$.

Example. $SL(n, \mathbb{R}) \leq GL(n, \mathbb{R})$. Then $GL(n, \mathbb{R})/SL(n, \mathbb{R}) \simeq (\mathbb{R} - \{0\}, \cdot)$

Proof. $f : GL(n, \mathbb{R}) \to \mathbb{R} - \{0\}, A \mapsto det(A)$. This is a group homomorphism, f is surjective, $\ker(f) = SL(n, \mathbb{R}) \implies GL(n, \mathbb{R})/SL(n, \mathbb{R}) \simeq \mathbb{R} - \{0\}$

Remark: If $H, K \leq G, HK = \{hk|h \in H, k \in K\}$. HK is not necessarily a subgroup of G. For example, consider $G = S_3$.

Fact: If $N \trianglelefteq G$ and $H \leq G$, then $HN \leq G$, $HN = NH$, and HN is the subgroup of G generated by $H \cup N$.

Proof. $HN \leq G$: If $a = h_1 n_1$, $b = h_2 n_2$, then $ab^{-1} = h_1 n_1 n_2^{-1} h_2^{-1} = h_1 h_2^{-1} h_2 n_1 n_2^{-1} h_2^{-1}$. Clearly, $n_1 n_2^{-1} \in N$ so $h_2 n_1 n_2^{-1} h_2^{-1} \in N$. Thus, $ab^{-1} \in HN$.

 $HN = NH$: We need to first show $HN \subseteq NH$. Let $hn \in HN \implies hnh^{-1} = n' \in N \implies$ $hn = n'h \in NH$, so $HN \subseteq NH$. Similar for other direction.

Clearly, $H, N \subseteq HN \leq G$. And for any $K \leq G$, let $H, N \subseteq K$. Since K is a subgroup, $\forall n \in N, h \in H, hn \in K$. Thus $HN \leq K$ is the smallest subgroup. In particular, HN is the subgroup generated by $H \cup N$.

■

2nd Isomorphism Theorem. Let $H \leq G, N \leq G$. Then $H \cap N \leq H$ and

$$
H/H \cap N \simeq HN/N
$$

Proof. If $\phi : H \to HN/N$ is given by $\phi(h) = hN$. $\ker(\phi) = \{h \in H | hN = N\} = H \cap N.$

 ϕ is surjective (so the *im*(ϕ) =range): $hnN = hN = \phi(h)$.

 ϕ is homomorphism.

Together by the first isomorphism theorem, the result follows. ■

3rd Isomorphism Theorem. Suppose $K \leq N \leq G$ and $K \leq G$. Then

$$
N/K \leq G/K
$$
 and $(G/K)/(N/K) \simeq G/N$

Proof. First part follows by definition.

Second part: Define ϕ : $G/K \to G/N$, $\phi(gK) = gN$ and check well-defined, homomorphism, $\ker(\phi) = N/K$, and ϕ surjective.

Well defined: $gK = g'K \implies g^{-1}g \in K \implies g^{-1}g' \in N \implies gN = g'N$. Surjectivity is clear, the rest is left as *exercise*.

4th Isomorphism Theorem. (Correspondence Theorem)

Let $N \trianglelefteq G$, then $\phi : G \rightarrow G/N$, $\phi(g) = gN$ induces a 1-1 correspondence between subgroups of G which contain N and subgroups of G/N .

- $N \leq H_1 \leq H_2 \iff H_1/N \leq H_2/N$, and $[H_2: H_1] = [H_2/N: H_1/N]$.
- $N \le H_1 \le H_2 \iff H_1/N \le H_2/N$, and in this case, $H_2/H_1 \simeq (H_2/N)/(H_1/N)$.

1.6 Simple and Solvable Groups

Definition. A group G is called **simple** if it has no normal subgroup other than $\{e\}$ and G.

Example. If G is finite and abelian, then G is simple iff G is cyclic of prime order. (*proof later*).

Example. Consider A_n , the **alternating group** of n elements. For a $\sigma \in S_n$, σ is a product of transpositions, or cycles of length 2. We call σ odd or even if the number of transpositions is odd or even. $A_n \leq S_n$

Note that this is well-defined: Proved using determinant of matrices. σ matrix generated from identity matrix using series of corresponding row swaps, which just alternates the sign of determinants. Thus even/odd is defined by the number of swaps. In particlar, A_n defines the set of all even permutations.

Also, $A_n \longleftrightarrow B_n$, $\sigma \mapsto \sigma(1\, 2)$. $[S_n : A_n] = 2 \implies A_n \leq S_n$

Conclusion: $A_n, n \geq 5$ is simple. For $n = 2, A_2 = \{e\}$. For $n = 3, A_3 = \{e, (1\ 2\ 3), (1\ 3\ 2)\}$.

For
$$
n = 4
$$
, $|A_4| = 12.\sigma_1 = (1\ 2)(3\ 4), \sigma_2 = (1\ 3)(2\ 4), \sigma_3 = (1\ 4)(2\ 3)$. Here, $\{e, \sigma_1, \sigma_2, \sigma_3\} \le A_4$

Theorem. A_n is simple if $n \geq 5$

Proof. (1) $A_n, n \geq 5$ is generated by 3 cycles, and (2) Every 2 3-cycles are conjugate in A_n : σ_1, σ_2 are 3-cycles, then $\exists \tau \in A_n : \tau \sigma_1 \tau^{-1} = \sigma_2.$, and (3) every normal subgroup $N \neq \{e\}$ in A_n has at least one 3-cycle. Together they prove the statement.

For (1), $T = \{(a\ b\ c)\ \vert\ 1 \le a < b < c \le n\} \subset A_n$, then $\langle T \rangle \subset A_n$. If

$$
\sigma = (a\,b)(c\,d) = \begin{cases} e, & \text{if } \{a,b\} = \{c,d\} \\ (a\,c\,b)(a\,c\,d), & \text{if } a,b,c,d \text{ all distinct} \\ (a\,d\,b) & \text{if } a=c \end{cases}
$$

For (2), if σ_1 , σ_2 are 3 cycles, are conjugate in S_n

Theorem. Jordan-Holder Theorem. If G is any finite group, then there is a unique tower of subgroups

$$
\{e\} = N_0 \trianglelefteq N_1 \trianglelefteq \cdots \trianglelefteq N_{k-1} \trianglelefteq N_k = G
$$

such that N_i/N_{i-1} is simple.

Definition. A **tower of subgroups**, $G_m \leq G_{m-1} \leq \cdots \leq G_1 \leq G_0 = G$ is **normal** if $G_{i+1} \trianglelefteq G_i$, and it is **abelian** if G_i/G_{i+1} is abelian, and **solvable** if there is an abelian tower ${e} = G_m \le G_{m-1} \le \cdots \le G_1 \le G_0 = G.$

Example.

- Any abelian group is solvable.
- S_3 is solvable, $\{e\} \trianglelefteq \{e, \sigma_1, \sigma_1^2\} \trianglelefteq S_3$
- $S_n, n \geq 5$ is not solvable

Proof. If $N \subseteq S_n$, then $N \cap A_n \subseteq A_n$. But A_n simple, so $N \cap A_n = \{e\}$ or A_n .

If $N \cap A_n = A_n$, then $A_n \le N \le S_n \implies N = A_n$ or $N = S_n$ due to $[S_n : A_n] = 2$. If $N \cap A_n = \{e\}$ and $N \neq \{e\}$, then if $\sigma_1, \sigma_2 \neq e, \sigma_1, \sigma_2 \in N$, then $\sigma_1 \sigma_2 \in N$ since they are even, so $\sigma_1 \sigma_2 = e$.

But by parts 1 and 2 of previous theorem, $N = A_n$. Since $N = \{e\}$, N, or $S_n \implies S_n$, $n \geq 5$ is not solvable. ■

Definition. Let $x, y \in G$. The **commutator** of $x, y := xyx^{-1}y^{-1} = [x, y]$ Note that $[x, y] =$ $e \iff xy = yx$, and $[x, y]^{-1} = [y, x]$. This gives us a notion of how far a group is from abelian.

Definition. G', the **commutator subgroup**, is the subgroup generated by all the commutators $[x, y]$, where $x, y \in G$. $G' = \{[x_1, y_1][x_2, y_2] \cdots [x_k, y_k] | x_i, y_i \in G\}$

Facts:

- $G' = \{e\} \iff G$ is ableian
- $G' \triangleleft G$
- G/G' is abelian

Proof. Insert gg^{-1} between the elements: $g[xy]g^{-1} = g x g^{-1} gy g^{-1} g x^{-1} g^{-1} g y^{-1} g^{-1} = [gx g^{-1}, gy g^{-1}] ∈$ G^{\prime} .

Similarly, $g[x_1,y_1]\cdots[x_k,y_k]g^{-1} = (g[x_1,y_1]g^{-1})\cdots(g[x_ky_k]g^{-1})$ G/G' abelian proof: Want $abG' = baG'. a^{-1}b^{-1}ab = [a^{-1}, b^{-1}] \in G'.$ So it is true.

Proposition. If $N \triangleleft G$, then G/N is abelian $\iff G' \leq N$

Proof. \implies : $\forall a, b \in G$, G/N abelian so $a^{-1}b^{-1}N = b^{-1}a^{-1}N$. Then $aba^{-1}b^{-1} \in N \implies [a, b] \in$ $N \implies G' \leq N$ $\Leftarrow : a^{-1}b^{-1}ab = [a^{-1}, b^{-1}] \in G' \subseteq N \implies a^{-1}b^{-1}ab \in N$ **Example.** $(S_n)' = A_n$. *Proof left as exercise*

Let $G^{(0)} := G, G^{(1)} = G', ..., G^{(i)} = (G^{(i-1)})'.$ $G^{(i+1)} \trianglelefteq G^{(i)}$ and $G^{(i+1)}/G^{(i)}$ is abelian.

Proposition. *G* is solvable iff $G^{(m)} = \{e\}$ for some $m \ge 1$

Proof. $\Longleftarrow: \{e\} = G^{(m)} \trianglelefteq \cdots \trianglelefteq G^{(1)} \trianglelefteq G$ is an abelian tower.

 \Rightarrow : If $\{e\} = G_m \trianglelefteq \cdots \trianglelefteq G_1 \trianglelefteq G_0 = G$ is abelian, then $G_1 \trianglelefteq G_0$, G_0/G_1 abelian $\Rightarrow G' \leq G_1$ $G_1, G_2 \trianglelefteq G_1, G_1/G_2$ abelian \implies $(G_1)' \leq G_2$ implies together that $G^{(2)} \leq G_1' \leq G_2'$ \implies $G^{(2)} \leq G_2.$

By induction, $G^{(i)} \leq G_i \forall i, G^{(m)} \leq G_m = \{e\}.$

Proposition. If $N \trianglelefteq G$, then N , G/N are solvable $\iff G$ is solvable.

proof: exercise, use derivative as one, use tower definition.

1.7 Group Actions

Definition. For a group G acting on set X, an **action of** G **on** X is a function α : $G \times X \rightarrow$ $X, (g, x) \mapsto g \cdot x$ such that

- $e \cdot x = x, \forall x \in X$.
- $(g_1g_2) \cdot x = g_1 \cdot (g_2 \cdot x)$, $\forall x_1, x_2 \in X, g \in G$

Note that $\forall g \in X, \phi_g : X \to X$ is a permutation, $x \mapsto g \cdot x$.

 ϕ_g is bijective, where $g \cdot x = g \cdot x' \implies g^{-1} \cdot (g \cdot x) = g^{-1} \cdot (g \cdot x') \implies e \cdot x = e \cdot x'.$

Also $\forall x \in X, \phi_g^{-1}(g \cdot x) = g \cdot (g^{-1} \cdot x) = x$

So, ψ : $G \rightarrow S_X$, the group of permutations of X with composition of functions and $g \mapsto \phi_g$.

Thus ψ is a homomorphism (not necessarily injective), since $\psi(g_1g_2)(x) = (g_1g_2)x = g_1(g_2x)$ $\psi(g_1) \circ \psi(g_2)(x)$.

Example.

- 1. Trivial action. $\forall g \in G, x \in X, g \cdot x = x$
- 2. Conjugation on elements of *G*. $X = G$, $g \cdot x = gxg^{-1}$
- 3. Conjugation on subgroups of G. Let X be set of subgroups of $G, g \in G, H \in X$. Then $g \cdot H = gHg^{-1} \leq G$, and $a, b \in gHg^{-1}$. Then $a = ghg^{-1}, b = gh'g^{-1} \implies ab = g(hh')g^{-1}$.
- 4. *G* acts on *G* by translation. $X = G, g \cdot x = gx$.

Definition. Suppose *G* acts on $X, x \in X$. Then the **stabilizer** is defined as

$$
G_x := \{ g \in G \mid gx = x \} \le G
$$

Definition. We also define an **orbit** of X that forms a partition in x.

$$
O_x = \{ gx \mid g \in G \} \subseteq X
$$

Note: *x* ∼ *y* if *y* ∈ *O_x*, so *y* = *gx* for some *g*. Thus, any two orbits are either *equal* or *disjoint*.

■

From the examples above, the stabilizer and orbit is

- 1. $G_x = G$, $O_x = \{x\}$
- 2. $G_x = \{g \in G \mid gx = xg\}, O_x = \{gxg^{-1} \mid g \in G\}$, the conjugacy class of x in G.
- 3. O_H = all subgroups conjugate to H , $G_H = \{ g \in G \mid gHg^{-1} = H \}$ normalizer $\leq H$
- 4. $G_x = \{ g \in G \mid gx = x \} = \{ e \}, O_x = \{ gx \mid g \in G \} = G$

Definition. As mentioned above, the **normalizer** of H in G is the largest subgroup of G in which H is normal.

$$
H \trianglelefteq N_G(H) = \{ g \in G \mid gH = Hg \} \leq G
$$

Definition. An action is **transitive** if there is only one orbit, $O_x = X$

Theorem. [Orbit Stabilizer Theorem]. Let X be a G-set, then $\forall x \in X$,

$$
|O_x| = [G:G_x]
$$

Proof. Define ψ : $O_x \rightarrow$ set of left cosets of G_x , $gx \mapsto gG_x$.

Well-defined (since we can't make sure $gx = gx' \implies x = x$): $gx = g'x \iff x = g^{-1}g'x \iff x = g^{-1}g'x$ $g^{-1}g' \in G \iff gG_x = g'G_x.$

Surjective: clear and a state of the sta

Definition. For group G, the **center** of G, Z(G), is defined as

$$
Z(G) = \{ g \in G \mid gg' = g'g \forall g' \in G \}
$$

Fact:

- $Z(G) = G \iff G$ abelian
- $Z(G) \triangleleft G$

Proof. Exericse. (Check video 9/13) ■

Example. $Z(S_n) = \{e\}, n \ge 3$

Example. If G acts on its subgroups in conjugation, $H \leq G$,

$$
|O_H| = [G : N_G(H)] \qquad N_G(H) = \{ g \in G \mid gHg^{-1} = H \}
$$

Theorem. Burnside's Lemma. If G, X finite, X is a G -set, then the number of orbits of the action is $\frac{1}{|G|}\sum_{g\in G}|F_g|$. where F_g is the set of elements of X fixed by g.

Proof. Consider $S = \{(g, x) | gx = x\} \subset G \times X$. We can count S in two different ways.

- 1. $\forall g \in G$, there are $|F_g|$ elements fixed by g so $|S| = \sum_{g \in G} |F_g|$.
- 2. ∀ $x \in X$, there are | G_x | elements of X fixed in x , which equals | G |/[O_x].

So
$$
\sum_{g \in G} |F_g| = \sum_{x \in X} \frac{|G|}{|O_x|} = |G| \sum_{\text{distinct orbits } O_x} \frac{1}{|O_x|} |O_x| = |G| \times \text{ num orbits in } X
$$

Corollary. If G acts transitively on X, and $|X| > 1$, then there is $g \in G$ such that $F_g = \emptyset$. In other words, $\forall x, y \in X$, ∃g such that $gx = y$. Equivalently, X has 1 orbit.

Proof. Burnside's Lemma gives $|G| = \sum_{g \in G} |F_g| = F_e + \sum_{g \neq e} |F_g|$. If $|F_g| \ge 1 \forall g$, then $|G| = |X| + \sum_{g \ne e} |F_g| \ge |X| + (|G| - 1) \implies |X| \le 1$, a contradiction. ■

1.7.1 Class Formula

Class Formula is when G acts on G via conjugation. If $x \in G = X$,

$$
G_x = \underbrace{\{g \in G \mid gx = xg\}}_{N(x)} \le G, \quad O_x = \{gxg^{-1} \mid g \in G\}
$$

 O_x gives a partition of G . So $|G| = \sum_{\text{distinct orbits}} |O_x| = \sum_{\text{distinct orbits}} [G : G_x = N(x)]$

 $|O_x| = 1 \iff x \in Z(G)$. So we can write that summing all distinct conjugacy class with more than 1 elements.

$$
|G| = Z(G) + \sum [G:G_x]
$$

Corollary. If $|G| = p^r$, p prime, then $Z(G) \neq \{e\}.$

Proof. Since $|G| = |Z(G)| = \sum [G : G_x]$, so if $Z(G) = \{e\}$, we get $p^r = 1 + \sum \frac{|G|}{|G_x|}$. where $|G|/|G_x| > 1$ and is a divisor of $|G| = p^r$. This implies that $p | 1$, a contradiction $\implies Z(G) \neq$ 1 \blacksquare

Corollary. If $|G| = p^2$, then *G* is ableian.

Proof. If G is not abelian, then $|Z(G)| = p$, so $Z(G)$ is proper subgroup of G. Pick $a \in G - Z(G)$, then $N(a) = \{b \mid ab = ba\} \neq G$. However $Z(G)$ is proper subgroup of $N(a)$ and $N(a)$ proper subgroup of G, a contradiction (a in $N(a)$ but not in $Z(G)$).

Corollary. If $|G| = p^r$, then *G* is solvable.

Proof. Proof by induction on $r, r = 1$ true.

Suppose this holds for 1, ..., $r-1$. Consider $Z(G) \triangleleft G$ and $Z(G) \neq \{e\}$. Here $|Z(G)|$ and $|G/Z(G)|$ are powers of p. So by hypothesis, $Z(G)$ and $|G/Z(G)|$ solvable $\implies G$ also solvable.

■

1.8 Sylow Theorems

Theorem. Suppose $|G| = p^r m$, $gcd(p, m) = 1$. Then $\forall 0 \le s \le r$, G has a subgroup of size p^s .

Proof idea: abelian case and non abelian case.

Lemma: If G is abelian and $p \bigm| |G|$, then G has a subgroup of order p .

Proof. Induction on order of G. If $|G| = p$, there is nothing to prove. Suppose $|G| > p$, Let $e \neq a \in G$, $t = ord(a)$. Then $H = \{e, a, ..., a^{t-1}\} \leq G$, and there are two cases:

- 1. If $p \mid t$, so $| < a^{\frac{t}{p}} > | = p$
- 2. Otherwise, let $n = |G|$, $n = tn'$ so $p | n' = |G/H| < n$. So, by induction hypothesis, G/H has subgroup of order p, so an order of order p. Let there be a surjective map $\phi: G \to G/H$, so if $\phi(b) = \overline{b}$, then $p | ord(b)$. So we can apply case 1 to b and get a subgroup of order p.

Remark: If $\phi : G \to G'$ is a group homomorphism and $g \in G$ and $ord(\phi(g)) \mid ord(g)$, so \overline{m} m

$$
g^m = e \to \phi(g)^m = e. \ (a^k = e \implies ord(a) \mid k)
$$

Proof of theorem. Recall that class formula states that when G acts on G by conjugation, $|G|$ = $|Z(G)| + \sum [G:G_x]$, summing over distinct orbits with more than 1 element.

Fix p induction on G. If $|G| = p$, we are done. Now, let's have two cases where (1) $p | |Z(G)|$ and (2) p doesn't divide $|Z(G)|$.

In case 1, by lemma, $Z(G)$ has subgroup H of order p. Since $H \leq Z(G)$ and $Z(G) \trianglelefteq G$, we get $H \trianglelefteq G$ so G/H is a group of size $p^{r-1}m$. So by induction hypothesis G/H has a subgroup of order s for all $0 \leq s \leq r - 1$. Any subgroup of G/H is K/H for $H \leq K \leq G$. So $|H| = p$, $|K/H| = p^s \implies |K| = p^{s+1}$. So this holds for $1 \leq s+1 \leq r$.

In case 2, G is not abelian, and we make two subcases.

- 1. Suppose $\forall x \notin Z(G), p \mid [G : G_x]$. This case is not possible since $p \mid |G|$ and p doesn't divide $Z(G)$
- 2. $\exists x \in Z(G), p \nmid [G : G_x] = |G|/|G_x| \implies p^r |G_x|$, and $|G_x| < |G|$. By induction hypothesis, G_x and therefore G has a subgroup of $p^s, 0 \leq s \leq r.$

■

■

Note: $H \trianglelefteq K \trianglelefteq G \implies H \trianglelefteq G$. Look at $G = A_4$.

Definition. A group *G* is a **p-group** if $|G| = p^r$. So $\forall e \neq a \in G, p \mid ord(a)$. And if $|G| =$ $p^r m, gcd(m, p) = 1$, $H \leq G$, then H is a **p-subgroup** if $|H| = p^s$, and H is a **p-sylow subgroup** if $|H| = p^r$.

Theorem. If $p \mid |G|$, then

- 1. Every *p* subgroup is contained in a *p*−sylow subgroup.
- 2. Any two p−sylow subgroups are conjugate.
- 3. If $r =$ number of p-sylow subgroups, then $r \mid |G|$ and $r \equiv 1 \mod p$

Proposition. If H is a p-subgroup and P is a sylow p-subgroup, then H is contained in a conjugate of $P: \exists g \in G, H \leq gP^{-1}g$

Implication: The proposition shows the first and second part of them.

Part 1. $|gPg^{-1}| = |P|$, so the conjugate is also a sylow P-sylow

Part 2. P, *P'* sylow, then ∃g such that $P' \subseteq gPg^{-1}$. Then $|gPg^{-1}| = |P| = p^r$ and $|P'| = r$ ⇒ $P' = gPg^{-1}.$

Proposition Proof. Let S be the set of conjugates of P and H acts on S by conjugation, so that $h \cdot$ $gPg^{-1} := hgPg^{-1}h^{-1}$. Then $S = \sum_{\text{distinct orbits}} |O_s| = \text{number of fixed points} + \sum_{\text{distinct w/size} > 1} |O_s|$.

Now the goal is to show that there \exists a fixed point. Since $|O_s| = [H : H_s]$ and $|H| = p^s$, then $p \, \big| \, |O_s|$.

Here, $|S| = [G : N_G(P)] \implies |S| = \frac{|G|}{|N_G(P)|}$ $\frac{|G|}{|N_G(P)|}$. Since $P \trianglelefteq N_G(P) \leq G$ and $p^r |N_G(P)|$, I get $p \nmid |S|$ and so $p^r | |N_G(P)|$.

Let gPg^{-1} be a fixed point. Then $\forall h \in H$, $hgPg^{-1}h^{-1} = gPg^{-1} \implies P = g^{-1}h^{-1}gPg^{-1}hg$ $\implies P = g^{-1}h^{-1}gP(g^{-1}h^{-1}g)^{-1} \implies g^{-1}h^{-1}g \in N_G(P)$. So $\forall h \in H \implies g^{-1}Hg \subseteq N_G(P)$. Let $K = g^{-1}Hg$, $K, P \leq N_G(P)$ and $P \leq N_G(P)$.

So by the second isomorphism theorem, $KP/P \simeq K/K\cap P \implies |KP| = \frac{|P||K|}{|K\cap P|}$ $\frac{|P||K|}{|K\cap P|}$ and $|KP| \big| |G|$, and $|P||K|$ is a power of $p \implies \frac{|K|}{|K \cap P|} = 1 \implies K \subseteq P \implies g^{-1}Hg \subseteq P \implies H \subseteq$ gPg^{-1} . . → December 2008 - December 2
December 2008 - December 2008

Part 3 Proof. By part 2, $r =$ number of all conjugates of $P = [G : N_G(P)]$, and $[G : N_G(P)] | |G|$. To show $r \equiv 1 \mod p$, let $H = P$ from proof of the proposition, so that $r =$ number of fixed points + a multiple of p

If gPg^{-1} is a fixed point, then by the proof $P \subseteq gPg^{-1}$, but $|P| = |gPg^{-1}|$ so $P = gPg^{-1}$. So only one fixed point \implies $r \equiv 1 (mod p)$

Note: $r = 1 \iff qPq^{-1} = P \forall q \in G \iff P \trianglelefteq G$

Corollary. If $|G| = pq$ where p, q are distinct primes and $p \not\equiv 1 \mod q$ and $q \not\equiv 1 \mod p$. Then G is cyclic.

Proof. Let r_1 be the number of sylow p-subgroups and r_2 be the number of sylow q-subgroups. Then $r_1 | pq, r_1 \equiv 1 \mod p \implies r_1 = 1$, and similarly $r_2 = 1$

If $H_1, H_2 \leq G$ with $|H_1| = p$ and $|H_2| = q$, then by the note, $H_1, H_2 \leq G$.

 $H_1 = \{e, a, ..., a^{p-1}\} = \langle a \rangle, H_2 = \{e, b, ..., b^{q-1}\} = \langle b \rangle$. For $aba^{-1} \in H_2$ and $ba^{-1}b^{-1} \in H_1$, $aba^{-1}b^{-1} \in H_1 \cap H_2 = \{e\} \implies ab = ba \implies ord(ab) \in \{1, p, q, pq\}.$ So $(ab)^p = a^p b^p = b^p \neq$ $e \implies \text{ord}(ab) = pq \implies G = \langle ab \rangle$

Fact: Group of order < 60 is solvable, since $N \leq G, N, G/N$ solvable $\implies G$ solvable.

Example. If $|G| \leq 30$, and G is not of prime order, then G is not simple.

Corollary. If $|G| \leq 30$, then G is solvable.

Proposition. If $|G| = n$ and p is the smallest prime divisor of n and $H \leq G$ has index p, then $H \trianglelefteq G$

Proof. If $p = 2$, this is proved before.

Suppose $H \ntrianglelefteq G$. Then there is $g \in G$ such that $gHg^{-1} \neq H$. Let $K = gHg^{-1}$.

Since $|HK| = |H|\frac{|K|}{|H \cap R}$ $\frac{|K|}{|H \cap K|}$, where $|H \cap K|$ which divides $|K|$ and so $|G|$. Then either $\frac{|K|}{|H \cap K|} = 1$ or $\frac{|K|}{|H \cap K|} \geq p$.

For the first case, $H \cap K = K \implies K \subseteq H \implies gHg^{-1} \subseteq H \implies gHg^{-1} = H$, not true.

For second case, $|HK| \ge p|H| = |G| \implies HK = G \implies g^{-1} \in HK = HgHg^{-1}$. So for some $h, h' \in H$, $hgh' = e \implies g = h^{-1}h'^{-1} \in H \implies gHg^{-1} = H$, a contradiction. So $H \leq H$

Corollary. If $|G| = pq^r$, and p, q are distinct prime and $p < q$. Then G has a normal subgroup.

Proof. By Sylow Theorem, there is a sylow q-subgroup H, so $[G : H] = p$. H is normal from the previous corollary.

Corollary. If $|G| = pq$, $p \neq q$, then G has a non-trivial normal subgroup.

Proposition. If $|G| = pq^2$, and p, q are distinct prime, then G is not simple.

Proof. If $p < q$, we are done by previous corollary.

So if $p > q$, let r be the number of sylow p-subgroups and s be number of sylow q subgroups.

Goal is to show that $r = 1$ or $s = 1$ since the only sylow subgroup is normal.

Since $r \equiv 1 \mod p, r \mid |G| = pq^2 \implies r \mid q^2$. So either $r = 1, r = q, r = q^2$. If $r = 1$, we are done. $r = q$ is impossible since $q \equiv 1 \mod p$ and $p | q - 1$ but $p > q$. So assume $r = q^2$.

So because $s \equiv 1 \mod q$, $s \mid |G| = pq^2$, then $s \mid p \implies s = 1$ or $s = q$. If $s = 1$, we are done. So assume $s = p$.

Then we have q^2 subgroups of order p and p subgroups of order q^2 . Then $|G| \geq 1 + q^2(p-1) + q^2(p-1)$ $q^2 - 1$, so there is only 1 q-sylow subgroup. So $s = 1$, and we are done.

Corollary. Every group of size $\leq n$ which is not of prime is *not simple*.

[Check Video]

<u>Fact:</u> If $|G| = 24$, then G is not simple.

Proof. Let r be the number of sylow 2-subgroups and s be the number of sylow 3-subgroups.

$$
\begin{cases} r \equiv 1 \mod 2 \\ r \mid 3 \end{cases} \implies \begin{cases} r = 1, \text{ so we have normal subgroup} \\ r = 3 \end{cases}
$$

So assume $r = 3$, and we have sylow 2-subgroups $H_1, H_2, H_3, |H_i| = 8$. Let $S = \{H_1, H_2, H_3\}$ and G acts on S by conjugation.

So there is a homomorphism $\phi: G \to S_3$, the group of permuations of S.

Use the fact that ker $\phi \leq G$ and we calim that ker $\phi \neq \{e\}$ or G.

- ker $\phi \neq \{e\} : |G| = 24$, $|S_3| = 6 \implies \phi$ not injective \implies ker $\phi \neq \{e\}$
- ker $\phi \neq G$: H_1, H_2 are conjugate by Sylow Theorem, so $\exists g \in G$ such that gH_1g^{-1} = $H_2 \implies g \cdot H_1 \neq H_1 \implies \phi(g) \neq e.$

$$
\begin{cases}\ns \equiv 1 \mod 3 \\
s \mid 8\n\end{cases}\n\implies\n\begin{cases}\ns = 1, \text{ so we have normal subgroup} \\
s = 4\n\end{cases}
$$

So assume $s = 4$

Fact: Any group of order < 60 is solvable. *Hint: 36 similar to 24, and 40 and 56 use counting of elements (union larger than elements?)*

1.9 Dihedral Group

Here, $|D_n| = 2n, D_n = \{e, x, \ldots, x^{n-1}, y, yx, \ldots, yx^{n-1}\}.$ When $n = 3, D_3 = S_3$ Fact: D_n is solvable *(Homework exercise)*.

1.10 Direct Product of Groups

Let G_1, G_2 be groups. Then $G_1 \times G_2 = \{(g_1, g_2) \mid g_1 \in G_1, g_2 \in G_2\}$, and $(g_1, g_2)(g'_1, g'_2)$ $(g_1g'_1, g_2g'_2)$. The identity element is (e_1, e_2) and $(g_1, g_2)^{-1} = (g_1^{-1}, g_2^{-1})$.

Let *I* be an index set $G_i, i \in I$. Then

$$
\prod_{i \in I} G_i = \{(x_i)_{i \in I} \mid x_i \in G_i\}
$$

are the **direct product** of G_i , where $(x_i)_{i \in I} (y_i)_{i \in I} = (x_i y_i)_{i \in I}$.

Then, the **direct sum** of *abelian groups* where A_i abelian, $\forall i \in I$.

$$
\bigoplus_{i \in I} A_i \le \prod_{i \in I} A_i, \bigoplus_{i \in I} A_i = \{(a_i)_{i \in I} \mid \text{there are only finitely many non-zero } a_i\}
$$

Notice that if *I* is *finite*, then $\bigoplus_{i \in I} A_i = \prod_{i \in I} A_i$.

Definition. Let A be an ableian group. Then

- $a \in A$ is **torsion** if ord (a) is finite: $\exists n > 0, na = 0$
- A_{tor} is the set of torsion elements in $A, A_{tor} \le A$ since $na = 0, mb = 0 \implies nm(a+b) = 0$
- A is **torsion-free** if $A_{tor} = \{0\}$.
- A is **torsion** if $A_{tor} = A$

Example. Z is torsion-free. \mathbb{Z}/m is torsion, and any finite abelian group is torsion.

Theorem. If A is a torsion abelian group, then $A \simeq \bigoplus_{p_i \text{ prime}} A(p)$, where $A(p)$ are elements a in *A* such that $ord(a)$ is a power of *p*, $p^ra = 0 \exists r \ge 1$.

Proof. Plan: We have $A \simeq A_{tor} \bigoplus A/A_{tor}$, where A/A_{tor} is torsion-free. Both parts are finitely generated. Then we show that A_{tor} is finite. Then since A/A_{tor} is finitely generated, and torsion free, $A/A_{tor} \simeq \mathbb{Z} \oplus \cdots \oplus \mathbb{Z}$. Then, show that A_{tor} finite is a direct sum of abelian p-groups, thus a direct sum of cyclic group.

Let $\phi: \oplus_p$ prime $A(p) \to A$ is homomorphism, $(x_p) \mapsto \sum x_p \in A$.

 ϕ surjective: $a \in A, ord(a) = m = p_1^{r_1} \cdots p_n^{r_n}$, p_i distinct prime. Then proceed by induction on *n*. If $n = 1$, then $ord(a) = p_1^{r_1} \implies a \in A(p) \implies a \in im(\phi)$. Then for *n*, $\text{ord}(a) = p_1^{r_1} \cdots p_n^{r_n} \iff ap_1^{r_1} \cdots p_n^{r_n} = 0$. So since $p_1^{n_1} \cdots p_{n-1}^{r_{n-1}}$ and $p_n^{r_n}$ coprime, $\exists s, t \in$ Z such that $sp_1^n \cdots p_{n-1}^{r_{n-1}} + tp_n^{r_n} = 1$, $asp_n^n \cdots p_{n-1}^{r_{n-1}} + atp_n^{r_n} = a$. Since the two numbers are in *im* ϕ , their sum is in *im*(ϕ).

 ϕ injective: Suppose $\phi((x_0)) = 0$, and $\exists q, x_q \neq 0$, then $\sum x_p = 0 \implies x_q = -\sum_{p \neq q} x_p \implies$ $x_q=-x_{p_1}-...--x_{p_n}. \text{ ord}(x_{p_i})=p_i^{s_i} \implies p_1^{s_1}\cdots p_r^{s_r}(-\overline{x_{p_1}}-...-\overline{x_{p_r}})=0 \iff \overline{q(p_1^{s_1^{r_i} \cdots p_r^{s_r}})}=0$ $0 \implies \text{ord}(q) \mid p_1^{s_1} \cdots p_r^{s_r}$, a contradiction.

Example. $A = \mathbb{Q}/\mathbb{Z}$, where $A(p) = \{\frac{a}{b} + \mathbb{Z} \mid \frac{p^r a}{b} \in \mathbb{Z}\}$ for some r.Then $\frac{p^r a}{b} = c \implies \frac{a}{b} = \frac{c}{p^r}$, $\text{so} = \left\{ \frac{c}{p^r} + \mathbb{Z} \, \middle| \, c \in \mathbb{Z}, r \ge 0 \right\}$

Lemma: Every finitely generated torsion abelian group is finite.

Proof. If $\text{ord}(a_i) = m_i$, and $A = \langle a_1, ..., a_k \rangle = \{n_1a_1 + ... + n_ka_k \mid n_i \in \mathbb{Z}\} = \{n_1a_1 + ... + n_ka_k \mid n_i \in \mathbb{Z}\}$ $n_k a_k | n_1 \in \mathbb{Z}, 0 \leq n_i < m_i$, which is finite.

Theorem. Every finite abelian *p*-group is a direct sum of cyclic groups.

Lemma: If A is a finite abelian *p*-group which is not cyclic, then A has at least 2 subgroups of order p.

Lemma Proof. See homework **A**

Theorem Proof. Let $a \in A$ be an element of maximal order. We prove by induction on |A| that there is a $B \le A$ such that $A = \langle a \rangle \oplus B$. This means that if $B_1, B_2 \le A$ such that $B_1 \cap B_2 =$ {0}.

If $|A| = p$, we are done.

Let $ord(a) = p^s$. Then $\lt a >$ has a unique subgroup of order p. Let $\lt b >$ be another subgroup of order *p* in *A* such that $\langle a \rangle \cap \langle b \rangle = \{0\}$, which exists due to the previous lemma.

Consider $\bar{A} = A / \langle b \rangle, |\bar{A}| = \frac{|A|}{p} \langle |A|$. Then there is $\bar{a} = a + \langle b \rangle$, an element of maximal order in \bar{A} .

By the induction hypothesis, there is a \bar{B} such that $\bar{A}=<\bar{a}>\oplus \bar{B}.$

So $\bar{B} \leq \bar{A} = A / \langle a \rangle \Longrightarrow \bar{B} = B / \langle a \rangle$ for $B \leq A$ with $\langle a \rangle \subset B_0$. Then $A = \langle a \rangle \oplus B$

Definition. A group A is free if A has a basis $\{a_i\}_{i\in I}$ such that $\forall a \in A$, $a = \sum_{i\in I} \lambda_i a_i$ in a unique way. So if A has a basis with n elements, $A \simeq \mathbb{Z} \oplus \cdots \oplus \mathbb{Z}$ \overline{n} elements .

■

Proposition. Free abelian groups are torsion-free

Proof. $A = \langle a_i \rangle$. Suppose $b \neq 0 \in A$ such that $mb = 0, b = \sum a_i \implies mb = \sum (m \lambda_i) a_i \implies$ $m\lambda = 0 \forall i \implies b = 0$, a contradiction.

Example. Torsion-free abelian groups are not necessarily free. Consider Q as an example. **Proposition.** Every *finitely-generated* torsion-free abelian group is free, $A \simeq \mathbb{Z} \oplus \cdots \oplus \mathbb{Z}$.

Proof. Let $A = \langle a_1, ..., a_n \rangle$ and induct on n. If $n = 1, A = \langle a_1 \rangle$ is torsion-free $\implies |A| =$ $\infty \implies A \simeq \mathbb{Z}.$

 $n-1 \implies n : \text{Let } B := \{a \in A \mid ma \in \exists m>0\}.$

Claim: *B* is cyclic, $B \le A \implies B$ finitely generated.

Let $B = **b**₁, ..., **b**_l > *\forall i* \exists m_i, m_i b_i \in$. Let $m = m_1 \cdots m_l$. Then $mb \in \forall b \in B$.

Now look at $\phi : B \rightarrow , b \mapsto mb$. Then $im(\phi) << a_1>$.

So $im(\phi)$ is cyclic: $im\phi = <\lambda a_1>, \lambda \geq 1$. Let $b_1 \in B$ such that $\phi(b_1) = \lambda a_i$.

Then $B = \langle b_1 \rangle$. If $b \in B$, $mb \in \mathit{imp} \implies mb = t\lambda = tmb_1$ for some $t \implies m(b - tb_1) = 0$. Since *A* torsion free, this means $b = tb_1 \implies b \in b_1 >$.

 A/B is generated by $a_2 + B, ..., a_n + b$ and is torsion-free, where if $m(a + B) = 0, m a \in B \implies$ $\exists \lambda : \lambda ma \in \implies a \in B.$

By the induction hypothesis, A/B is free \implies by proposition last time, $A = B \oplus C \simeq \mathbb{Z} \oplus \mathbb{Z} \oplus$ $\cdots \oplus \mathbb{Z}$., so this is free.

Proposition. Every subgroup of a finitely generated abelian group is finitely generated.

Idea: This implies that A_{tor} is finitely generated. Combining with previous result that a finitely generated and torsion group is finite, I can then write $A_{tor} = \mathbb{Z}_{p_1^{r_1}} \oplus \cdots \oplus \mathbb{Z}_{p_m^{r_m}}$.

Proof. Let $H \leq A$, $A = \langle a_1, ..., a_n \rangle$, and proceed by induction on n. If $n = 1$, this is cyclic so clearly true.

 $n-1 \implies n$: Let $B = \langle a_1, ..., a_{n-1} \rangle \le A$. Then by induction hypothesis, $H \cap B = \langle h_1, ..., h_{n-1} \rangle$ generated by at most $n - 1$ elements.

Also, $A/B = $a_n + B>$.$

Note that $\frac{H+B}{B}\simeq \frac{H}{H\cap B}$. Since $\frac{H+B}{B}\leq \frac{A}{B}$, it is also cyclic, so $\frac{H}{H\cap B}$ cyclic, generated by some $\langle h_n + (H \cap B) \rangle, h_n \in H.$

So $H = < h_1, ..., h_n >$, I need to show that they actually generate H. If $h \in H$, then $h + (H \cap B) =$ $\lambda_n h_n + (H \cap B) \implies h - \lambda_n h_n \in (H \cap B) \implies h - \lambda_n h_n = \sum_{i=1}^{n-1} \lambda_i h_i \implies h = \sum_{i=1}^n \lambda_i h_i.$

Proposition. If A is abelian and $B \subseteq A$ such that A/B is a free abelian group, then there is a subgroup $C \leq A$ such that $A = B \oplus C$.

Proof. Let $\{a_i + B\}_{i \in I}$ be a basis for A/B . Let $C = \langle a_i \rangle \leq A$. We claim that $A = B \oplus C$.

First show $B\cap C=\{0\}$: Suppose $\sum_{i\in I}\lambda_ia_i\in B,$ then $\sum_{i\in I}\lambda_ia_i+B=B$, so $\sum_{i\in I}\lambda_i(a_i+B)=$ *B*, where *B* is the 0 of A/B . So, $\lambda_i = 0 \forall i$.

To show
$$
A = B + C
$$
: If $a \in A$, then $a + B = \sum_{i \in I} \lambda_i (a + B)$ in A/B , so $a + B = \sum_{i \in I} (\lambda_i a_i) + B$,
so $a - \sum_{i \in I} \lambda_i a_i \in B$.

Summary: Since A is finitely generated, A/A_{tor} is torsion-free, and A finitely generated \implies A/A_{tor} is finitely generated. So, by previous proposition, A/A_{tor} is free.

Then by the other proposition, $\exists C \leq A, A = A_{tor} \oplus C$. So C is finitely generated, and can be written as $\mathbb{Z} \oplus \cdots \oplus \mathbb{Z}$

Definition. Let F be a group (not necessarily abelian) and $X \subset F$. Then F is a free group with basis X if it satisfies the following universal property:

• \forall group *G* and every function $f : X \to G$, there is a *unique* homomorphism $\phi : F \to G$ extending f.

For a set X, the **free group generated** by $X = \{a_1 \cdots a_k \mid a_i \in \{e\} \cup X \cup X^{-1}\}\$

Example. If $X = \{x\}$, the free group generated by $X = \{x^r | r \in \mathbb{Z}\}\simeq \mathbb{Z}$

Example. $X = \{x, y\}$, then $F = \{x^{k_1}y^{r_1} \cdots x^{k_n}y^{r_n} \mid r_n, k_n \in \mathbb{Z}, n > 0\}$.

Fact: Every group is a quotient of a free group. $G = \langle x_i \rangle, i \in I$.

Let F be free group generated by $\{x_i\}_{i\in I}$. By the universal property, \exists homomorphism ϕ : $F \to G$, ϕ surjective. Let $N = \text{ker}(\phi)$, $N \leq F$. Then $F/N \simeq G$.

If $N = \langle y_j \rangle, j \in J$. Then $\langle x_i, i \in I | y_j = e, j \in J \rangle$ is a presentation of G .

Example. $G = \mathbb{Z}_6, \mathbb{Z}_6 = \{0, 1, 2, 3, 4, 5\}$. Let $\phi : \mathbb{Z} \to \mathbb{Z}_6$, $1 \mapsto \overline{1}$. $N = < 6 > \subseteq \mathbb{Z}$. $Z_6 = < x \mid x^6 =$ $e >$

Example. $S_3 = \{e, (1\,2)$ \sum_{x_1} ,(1 3) $\sum_{x_2x_1}$,(2 3) $\sum_{x_2^2 x_1}$,(1 2 3) ${x_2}$,(1 3 2) ${x_2^2}$ } Then $S_3 = $x_1, x_2 >$. So a *presentation* of$ $S_3 =$

Proposition. Let G be a free group generated by x, y . G is finitely generated, $H \leq G$ generated by $\{yxy^{-1}, y^2xy^{-2}, y^3xy^{-3}, ...\}$. Then H is <u>not</u> finitely generated.

1.11 Automorphisms

Definition. Let G be a group. If ϕ : $G \rightarrow G$ is an *isomorphism*, then ϕ is an **automorphism** of G. $Aut(G)$ is the group of automorphisms of G under composition of function, $Aut(G) \leq S_G$.

Example. What is $Aut(G)$ if G is cylic of order m? Define $\phi : G \to G$, $\phi(x) = x^l$, $0 \le l \le m-1$. This is always a homomorphism. In particular, ϕ isomorphism $\iff x^l$ has order m in $G \iff \frac{m}{gcd(m,l)} = m \iff gcd(m,l) = 1.$

Example. Let \mathbb{Z}_m^{\times} be the group of units in \mathbb{Z}_m under multiplication = $\{l \in \mathbb{Z}_m \mid \gcd(l,m) = 1\}$. Then $Aut(G) \to \mathbb{Z}_m^\times$, $\phi \mapsto l$, $\phi(x) = x^l$ is an isomorphism.

$$
\begin{cases}\n\phi \mapsto l_1 \implies \phi_1(x) = x^{l_1} \\
\phi_2 \mapsto l_2 \implies \phi_2(x) = x^{l_2}\n\end{cases}\n\implies \phi_2 \circ \phi(x) = \phi_1(x^{l_2}) = x^{l_1 l_2}
$$

1.12 Semi-Direct Product of Groups

Previously for A abelian, $H, K \leq A, H \cap K = \{0\}, A = H + K$, we denote $A = H \oplus K$, where $H \times K \simeq A, (h, k) \mapsto h + k.$

More generally, if G is a group, $H, K \leq G$ such that $H \cap K = \{e\}, G = HK$ and $hk = kh \forall h \in G$ $H, k \in K$, then $H \times K \simeq G$, $(h, k) \mapsto hk$.

Proof.
$$
(h,k) \mapsto hk, (h',k') \mapsto h'k', (hh', kk') \mapsto hh'kk' = hkh'k'.
$$

\n $(h,k) \mapsto e \implies hk = e \implies k = h^{-1} \implies k \in K \cap H \implies k, h = e.$

In particular if it is not the case that $hk = kh\forall h \in H, k \in K$, then $G \not\cong H \times K$.

Example. $G = S_3$, $H = \{e, (1\ 2\ 3), (1\ 3\ 2)\}$, $K = \{e, (1\ 2)\}$. $HK = S_3$, $H \cap K = \{e\}$. But $S_3 \not\simeq H \times K \simeq Z_3 \times \mathbb{Z}_2.$

If $K \leq G, H \leq G$, then $HK \leq G$.

Example. Let K act on H (normal to G) by conjugation. Then $\phi : K \to Aut(H)$ is $k \mapsto \phi_k$, $\phi_k(h) = khk^{-1}\forall h.$

Definition. Let H and K be two groups and $\phi: K \to Aut(H)$ a homomorphism, $k \mapsto \phi_k$. Then $(H \times K)$ with operation $(h, k)(h', \overline{k}') = (h \phi_k(h'), kk')$ is a group, denoted by $H \rtimes K$, the **semi-direct product** of H and K.

Proof of Group Properties. Identity: (e, e) . $(e, e)(h, k) = (e\phi_e(h), k) = (h, k)$. $(h, k)(e, e) =$ $(h, \phi_k(e), k) = (h, k).$

Inverse of $(h, k) = (\phi_{k-1}(h^{-1}), k^{-1})$. $(h, k)(\phi_{k-1}(h^{-1}), k^{-1}) = (h\phi_k(\phi_{k-1})(h^{-1}), e) = (e, e)$. ■

Fact: If ϕ is the identity homomorphism $\phi_k = e$ on H, then $H \rtimes K \simeq H \times K$.

 $H \times K$ contains copies H and K as normal subgroup. $H \to H \times K$, $h \mapsto (h, e)$.

 $(h', k')(h, e)(h', k^{-1}) = (h' h h^{-1}, e)$, and $H \trianglelefteq (H \rtimes K)$

Proposition. If $H, K \leq G, H \leq G, H \cap K = \{e\}, G = HK$, then $G \simeq H \rtimes K$. $k \mapsto Aut(H), k \mapsto$ ϕ_k , $\phi_k(h) = khk^{-1}$.

Corollary. $S_3 \simeq \mathbb{Z}_3 \rtimes \mathbb{Z}_2$. Notice that this means that ϕ trivial or $\mathbb{Z}_3 \rtimes \mathbb{Z}_2 = \mathbb{Z}_2$ or $\phi_1(1) = 2$ which is S_3

Proposition Proof. $f : H \rtimes K \to G$, $(h, k) \mapsto hk$. To show f injective, $f(h, k) = e \implies hk =$ $e \implies h, k = e.$

1.13 Classification of Small Groups

By order,

2. \mathbb{Z}_2 3. \mathbb{Z}_3 4. $\mathbb{Z}_2 \oplus \mathbb{Z}_2, \mathbb{Z}_4$ 5. Z⁵ 6. $\mathbb{Z}_2 \oplus \mathbb{Z}_3$. Non-abelian: S_3 $7.$ \mathbb{Z}_7 8. \mathbb{Z}_8 , $\mathbb{Z}_2 \oplus \mathbb{Z}_4$, $\mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2$. Non-abelian D_4 , Q_8

- 9. \mathbb{Z}_9 , $\mathbb{Z}_3 \oplus \mathbb{Z}_3$
- 10. \mathbb{Z}_{10} , \mathbb{Z}_{5} *b* \oplus \mathbb{Z}_{2} . Non-abelian: D_{5}
- 11. \mathbb{Z}_{11}

12. $\mathbb{Z}_3 \oplus \mathbb{Z}_4$, $\mathbb{Z}_3 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2$. Non-abelian: $D_6(=\mathbb{Z}_2 \times S_3)$, A_4 , $\mathbb{Z}_3 \rtimes \mathbb{Z}_4$, In particular, $\phi: \mathbb{Z}_4 \to Aut(\mathbb{Z}_3)$, which is $\mathbb{Z}_2.$ $0 \mapsto 0, 1 \mapsto 1, 2 \mapsto 0, 3 \mapsto 1$

2 Rings

Definition. A non-empty set R is a **ring** if there are operations multiplication(\cdot) and addition $(+)$ on R such that

- $(R, +)$ is an abelian group.
- $a \cdot (b \cdot c) = (a \cdot b) \cdot c$
- $a \cdot (b+c) = a \cdot b + a \cdot c, (b+c) \cdot a = b \cdot a + c \cdot a$.
- There is an element $1 \in R$ such that $a \cdot 1 = 1 \cdot a = a \forall a \in R$.

Properties:

- Unity is unique. $1 = 1 \cdot 1' = 1'$
- $0 \cdot a = 0, \forall a \in R : 0a = (0+0)a = 0a + 0a \implies 0a = 0$

•
$$
(-a)b = a(-b) = -(ab) \cdot (-a)b + ab = (-a + a)b = 0b = b \implies (-a)b = -(ab)
$$

Example. $(\mathbb{R}, +, \cdot)$, $(M_n(\mathbb{R}), +, \cdot)$, $(\mathbb{R}[x], +, \cdot)$, $(\mathbb{R}[[x]], +, \cdot)$, which is the ring of formal power series. $\{a_0 + a_1x + a_2x^2 + \dots | a_i \in \mathbb{R}\}.$

Definition. Let R , S be rings, $f : R \rightarrow S$ is a **ring homomorphism** if

- $f(a + b) = f(a) + f(b)$
- $f(ab) = f(a) f(b)$
- $f(1_R) = f(1_S)$

Example. $f : \mathbb{R} \to M_2(\mathbb{R}), r \mapsto \begin{bmatrix} r & 0 \\ 0 & 0 \end{bmatrix}$ satisfies 1 and 2 but not 3.

Definition. $S \subseteq R$ is a **subring** if $(S, +) \leq (R, +)$ and $1 \in S$ and S is closed under multiplication.

Definition. I ⊂ R is a **left ideal** if

- $(I,+) < (R,+)$
- $\forall r \in R, a \in I$, we have $ra \in I$.

A **right ideal** is similarly defined. In particular, I ⊂ R is an **ideal** if *both right and left ideals*.

Fact: If $f : R \to S$ is a ring homomorphism, then

- $\ker(f)$ is an ideal of R
- $im(f)$ is a subring of S.

Definition. Let $I \subset R$ be an ideal

$$
R/I := \{r + I \mid r \in R\}
$$

is a ring with $(r_1 + I)(r_2 + I) := r_1r_2 + I$, $(r_1 + I)(r_2 + I) := (r_1 + r_2) + I$

Definition.

- *R* is **commutative** if $ab = ba \forall a, b \in R$.
- *R* is a **division ring** if every $0 \neq a \in R$ has a multiplicative inverse.
- A commutative division ring is a **field**.
- If $a, b \in R$, $a, b \neq 0$ but $ab = 0$, then a, b are called **zero devisors**.
- A *commutative ring* with no zero divisor is an **integral domain**.

Example.

- $\mathbb Z$ is an integral domain
- \mathbb{Z}_n is a field \iff *n* is prime.

2.1 Ideals and Quotient Rings

Let $I \subset R$ be an ideal, then we have $R/I = \{r + I \mid r \in R\}$, with $(r + I)(s + I) = rs + I$.

Proof of Well-defined Multiplication. Want to check that $r + I = r' + I$ and $s + I = s' + I \implies$ $rs + I = r's' + I.$

 $r - r', s - s' \in I$. On the other side, $rs - r's' = r(s - s') + (r - r')s' \in I$, which is true.

 R/I is a ring, with unity $1 + R$ and zero $0 + R$. The *canonical homomorphism* is given by

 $f: R \to R/I$, $r \mapsto r + I$

where f is clearly surjective and $ker(f) = I$.

2.1.1 Ring Isomorphism Theorems

First Isomorphism Theorem. If $f : R \to S$ is a ring homomorphism, then

$$
R/ker(f) \simeq im(f)
$$

[Second Isomorphism Theorem.] If $S \subseteq R$ is a subring and $I \subset R$ is an ideal, then $S \cap I$ is an ideal of S and I is an ideal in

$$
S + I = \{ s + i \mid s \in S, i \in I \} \le R
$$

and

$$
S/S \cap I \simeq S + I/I
$$

Ideal in $S + I$ *.* $(s + i)(s' + i') = ss' + is' + si' + ii'$, with $is' + si' + ii' \in I$

[Third Isomorphism Theorem.] If $I \subset J \subseteq R$, *I*, *J* ideals in *R*, then $J/I = \{j + I \mid j \in J\}$ is an ideal of R/I and P/I

$$
\frac{R/I}{J/I} \simeq R/J
$$

[Fourth Isomorphism Theorem.] (Correspondance Theorem) Let I ⊂ R be an ideal. There is a 1-1 correspondence between subrings of R/I and subrings of R containing I .

2.2 Maximal Ideals and Prime Ideals

Definition. An ideal $M \subseteq R$ is called a **maximal ideal** if for any $I \subseteq R$ with $M \subseteq I \subseteq R$, then $I = M$ or $I = R$. Every **proper ideal** is contained in a maximal ideal by *Zorn's Lemma*.

[Zorn's Lemma] If S is a *partially ordered* set in which every *totally ordered subset* has an upper bound contains a maximal element. It is *Partially ordered* if

> $\sqrt{ }$ \int \mathcal{L} $a \leq a$ $a \leq b$ and $b \leq a \implies a = b$ $a \leq b$ and $b \leq c \implies a \leq c$

So it follows that if $S' \subset S$ is totally ordered, then $\bigcup_{I \in S'} I$ is in S and an upper bound in S .

Proposition. *I* is maximal ideal $\iff R/I$ is a field

Proof. \implies : Assume $r + I \neq I$, so $r \notin I$. If R is a commutative ring, $X \subseteq R$, then the ideals generated by $X, \langle X \rangle = \{r_1x_1 + \cdots r_kx_k \mid k \geq 1, r_i \in R, x_i \in X\}.$

Then let $J = \langle r, I \rangle \subseteq R$, then clearly $I \subseteq J \subseteq R$. Since J ideal and I maximal ideal, $I = J$ or $J = R$, but $r \in J - I$, so $J = R \implies 1 \in J = \langle i, J \rangle \implies 1 = r'r + i$. Thus $1 - rr' \in I \implies$ $(1 + I) = (r + I)(r' + I)$, where $(r' + I)$ is the inverse of $(r + I)$.

 \Leftarrow : If R/I is a field and $I \subseteq J \subseteq R$, then J/I is an ideal of R/I . The only proper ideals of a field is $\{0\}$

Definition. If $I \subseteq R$ is an ideal, we say I is **prime** if $ab \in I \implies a \in I$ or $b \in I$ for $a, b \in R$.

Example. $R = \mathbb{Z}$, and let $m\mathbb{Z}$ be an ideal, $m \in \mathbb{Z}$. $m\mathbb{Z}$ is prime iff m is prime

Proof. \implies : If $m = ab$, and $a, b > 1$, then $ab = m \in m\mathbb{Z}$ but $a, b \notin m\mathbb{Z}$ \Longleftarrow : If $ab \in m\mathbb{Z}$, then $m \mid ab \implies m \mid a$ or $m \mid a$  ■

Proposition.

- 1. Every maximal ideal is prime
- 2. $I \subseteq R$ is prime $\iff R/I$ is an integral domain.
- 3. P is a prime ideal $\iff IJ \subseteq P$ implies $I \subseteq P$ or $J \subseteq P$ for ideals $I, J \subseteq R$. In particular, $IJ := \{ \sum_{i=1}^n a_i b_i \mid n \geq 1, a_i \in I, b_i \in J \}$ is an ideal of R and $IJ \subseteq I \cap J$.

Proof (1): If M is maximal and $ab \in M$ and $a \notin M$, then the ideal generated by $a, M, \langle a, M \rangle :=$ ${ra + m, m \in M, r \in R}$ is an ideal where $M \subsetneq \langle a, M \rangle \subset R$. Then $\langle a, M \rangle = R$ since M maximal, so $1 = ra + m$ for some $r \in R$, $m \in M \implies b = rab + mb$, so $b \in M$.

Proof (2): \implies : If $(a+I)(b+I) = 0$, then $ab+I = 0$, so $ab \in I \implies a \in I$ or $b \in I$, so $a+I = \overline{0}$ or $b + I = \overline{0}$, where $\overline{0}$ is the zero of R/I .

 \Longleftarrow : If $ab \in I$, then $(a+I)(b+I) = \overline{0}$, so $a+I = \overline{0}$ or $b+I = \overline{0}$, so $a \in I$ or $b \in I$. ■

Proof (3): If P is prime and $IJ \subseteq P$ but $I \subseteq P$ and $J \subseteq P$, then pick $a \in I \backslash P$ and $b \in J \backslash P$, then $ab \in IJ$ but $ab \notin P$, a contradiction

Conversely, assume $IJ \subseteq P$ implies $I \subseteq P$ or $J \subseteq P$ for ideals $I, J \subseteq R$. Let $I = \langle a \rangle = \{ra \mid r \in \mathbb{R} \}$ R} and $J = \langle b \rangle = \{rb \mid r \in R\}$. Then $IJ = \langle ab \rangle$ (check this). So $IJ \subseteq P$, so $a \in I \subseteq P$ or $b \in J \subseteq P$, so $a \in P$ or $b \in P$.

Example. $m\mathbb{Z} \subseteq \mathbb{Z}$ is prime $\iff m\mathbb{Z}$ is maximal $\iff m$ is prime.

Proof. $m\mathbb{Z} \subseteq n\mathbb{Z} \iff n | m$, so prime implies maximal ideal. Alternatively, consider proposi- $\frac{1}{2}$ and $\frac{1}{2}$ a

Example. $\{0\}$ is a prime ideal $\iff R$ is an integral domain. This also follows from proposition 2.

2.3 Chinese Remainder Theorem

For $0 < m_1, ..., m_n \in \mathbb{Z}$, $gcd(m_i, m_j) = 1$, then for any $r_1, ..., r_n \in \mathbb{Z}$, the system of equation

 $\sqrt{ }$ \int $\overline{\mathcal{L}}$ $x \equiv r_1(\mod m_1)$. . . $x \equiv r_n(\mod m_n)$ has a solution

In rings, I reformulate this problem for a commutative ring R, where $I_1, ..., I_n$, $n \geq 2$ are ideals in R such that $I_i + I_j = R$ for every $i, j, i \neq j$. Then for any $r_1, ..., r_n \in R$, there is $x \in R$ such that $x - r_i \in I_i \forall 1 \leq i \leq n$.

Proof. Proceed with induction on n: If $n = 2$, $I_1 + I_2 = R \implies \exists a_i \in I_i$ such that $a_1 + a_2 = 1$. Then let $x = r_1a_1 + r_2a_1$, then $x - r_1 = r_1(a_2 - 1) + r_2a_1 = -r_1a_1 + r_2a_1 \in I_1$. Similar for $x - r_2$.

 $2 \implies n : \text{For } I_1, \ldots, I_n, \text{ let } J = I_2 \cdots I_n. \text{ Claim: } I + J = R.$

So for $I_1 + I_i = R \forall i \geq 2, \exists a_i \in I_1, b_i \in I_i$ such that $a_i + b_i = 1 \implies 1 = \prod_{i=2}^n (a_i + b_i) = I_1 + J$. By case 2 of the theorem, $\exists y_1 \in R$ such that $y_1 - 1 \in I_1, y_1 - 0 \in J \implies y_1 \in I_2 \cdots I_n$. In a similar way, $\forall 1 \leq i \leq n$, we find $y_i \in R$ such that $y_i - 1 \in I_i$ and $y_i = I_1 \cdots \hat{I}_i \cdot I_n \subseteq I_j \forall j \neq i$. Note that $I \cap J \subseteq IJ$.

Let $x = r_1y_1 + ... + r_ny_n$. Then $x - r_i = r_1y_1 + ... + r_i(y_i - 1) + ... + r_ny_n$. Every y_i is in I_i , so this entire expression is in I_i . . ■

2.4 Product of Rings

Let R , S be rings, then

 $R \times S = \{ (r, s) | r \in R < s \in S \}$

where $(r_1, s_1) + (r_2, s_2) = (r_1 + r_2, s_1 + s_2)$. and $(r_1, s_1)(r_2, s_2) = (r_1r_2, s_1, s_2)$

Corollary. If $I_1, ..., I_n$ are ideals of R such that $I_i + I_j = R$ for $i \neq j$. Then

$$
\frac{R}{\bigcap_{i=1}^{n} I_n} \simeq \prod_{i=1}^{n} R/I_i
$$

Proof. Define $\phi: R \to \prod_{i=1}^n R/I_i$ by $\phi(r) = (r + I_1, ..., r + I_n)$, and ϕ is a ring homomorphism. $\ker(\phi) = \bigcap_{i=1}^n I_i.$

 ϕ surjective: $\forall (r_1 + I_1, ..., r_n + I_n) \in \prod_{i=1}^n R/I_i$, by the chinese remainder theorem, $\exists x \in I$ R such that $x + I_i = r_i + I_i$, so by the first isomorphism theorem, we get the result.

Example. If $R = \mathbb{Z}$, and prime factorization $m = p_1^{r_1} \cdots p_n^{r_n}$, $I_i = p_i^{r_i} \mathbb{Z}$. Then note that $I_i = \tilde{p_i^{r_i}}\mathbb{Z}, I_i + I_j = \mathbb{Z}$, and $\cap_{i=1}^n I_i = m\mathbb{Z}$. So,

$$
\mathbb{Z}/m\mathbb{Z} \simeq \prod_{i=1}^n \mathbb{Z}/p_i^{r_i}\mathbb{Z}
$$

as rings. Also,

$$
\mathbb{Z}_m\simeq \prod_{i=1}^n\mathbb{Z}_{p_i}^{r_i}
$$

as rings.

2.5 Localization

Suppose R is an integral domain. Consider the equivalence relation $\frac{a}{b} \sim \frac{c}{d} \iff ad = bc$. Then, we can mod out by equivalence relationship.

$$
\{\frac{a}{b}\;\big|\;a,b\in R,b\neq 0\}\big/\sim
$$

Then we define the ring structure such that for $b, d \neq 0, \frac{a}{b} + \frac{c}{d} = \frac{ad+bc}{bd}, \frac{a}{b} \frac{c}{d} = \frac{ac}{bd}$. There are well-defined. The unity is $\frac{1}{1}$, and the zero is $\frac{0}{1}$. This is a commutative ring, and any non-zero element $\frac{a}{b}$, $a, b \neq 0$ has a multiplicative inverse $\frac{b}{a}$. Thus we get a field, namely the field of fraction of R (Quotient field).

Definition. Suppose R is a commutative ring. Then $S \subset R$ is a **multiplicative subset**, where $1 \in S$ and $a, b \in \overline{S} \implies ab \in S$, and $0 \notin S$

Example.

- For $0 \neq r \in R$, $S = \{1, r, r^2, ...\}$
- $P \subseteq R$ be a prime ideal and $S = R \backslash P$. Then $a, b \notin P \implies ab \notin P$.

Define $S^{-1}R = \{(r, s) | r \in R, s \in S\}/\sim$. Then consider the equivalence relationship $(r, s) \simeq$ $(r', s') \iff \exists s'' \in S \text{ such that } s''(rs' - sr') = 0.$

If $0 \in S$, then $(r, s) \simeq (0, 0)$, and everything is 1 equivalence relationship. So from now on, we assume $0 \notin S$. Then we have ring structure on $S^{-1}R$, $\frac{r}{s} + \frac{r'}{s'}$ $\frac{r'}{s'} = \frac{rs'+r's}{ss'}$, and $\frac{r}{s} \frac{r'}{s'}$ $\frac{r'}{s'}=\frac{rr'}{ss'}$.

Operations are well-defined: If $\frac{r}{s} = \frac{r_0}{s_0}$, then $\exists s'', s''(rs_0 - r_0s) = 0$. Then I want to check that $\frac{r}{s} + \frac{r'}{s'}$ $\frac{r'}{s'} = \frac{r_0}{s_0} + \frac{r'}{s'}$ $\frac{r'}{s'} \iff \frac{rs'+r's}{ss'} = \frac{r_0s'+r's_0}{s_0s'} \iff \cdots = 0$. Last step consists of annoying factorization.

There is a natural ring homomorphism defined by $\phi: R \to S^{-1}R$, $\phi(r) = \frac{r}{1}$.

In particular if R is an integral domain (so $rs' = r's$), $S^{-1}R$ is a subring of the field of fractions of R , which we can write as $R \subset S^{-1}R \subset K$, where K is the field of fractions.

Note that $\phi: R \to S^{-1}R$ has the property that $\phi(s)$ is invertible. Namely $\forall s \in S, \phi(s) = \frac{s}{1}$, so $\frac{s}{1}$ $\frac{1}{s}$ = $\frac{1}{1}$. And if $\psi : R \to R'$ is a ring homomorphism such that $\psi(s)$ invertible in R' , then $\exists ! f : S^{-1}\overline{R} \to R'$ such that $f \circ \phi = \psi$ [Check video for graph]

Proposition. Assume R is an integral domain

- If $S = R \setminus \{0\}$, then $S^{-1}R$ is the field of fractions of R.
- If $S = \{1, f, f^2, ..., \}$ where $f \in R$ such that $f^n \neq 0 \forall n, R_f = S^{-1}R = \{\frac{a}{f^r} \mid a \in R, r \geq 0\}.$
- If $P \subset R$ is a prime ideal and $S = R \setminus P$, $R_P = S^{-1}R = \{\frac{a}{b} \mid a, b \in R, b \notin P\}$
- If $P \subsetneq R$ is a prime ideal, then R_p is a **local ring**. i.e. it has a *unique* maximal ideal. This unique maximal ideal is defined as $\{\frac{a}{b} \mid a, b \in R, b \notin P, a \in P\}$. If $b \notin P$, then there is an inverse which is not possible since $P \subsetneq R$.

2.6 Principal Ideal Domains (PIDs)

Definition. For *integral domain* R , an ideal $I \subseteq R$ is **principal** if it is generated by one element $I = \langle a \rangle = \{ ra \mid r \in R \}.$ Then R is **PID** if every ideal is *principal*.

Example.

- $\mathbb Z$ is PID. Every ideal generated by some n .
- $\mathbb{R}[x]$ is a PID. If $I \neq \{0\}$ is an ideal and $0 \neq f(x) \in I$ has the smallest degree, then $I = \langle f(x) \rangle$. If $g \in I$, dividing g by f means that $g(x) = g(x)f(x) + r(x)$. So $r(x)$ or $deg(r) < deg(f)$. By $r(x) = g(x) - q(x)f(x) \in I$, by $deg(r) \geq deg(f(x)) \implies r = 0 \implies$ $g \in \langle f \rangle$.
- $\mathbb{R}[x, y]$ is not a PID. $\langle x, y \rangle = \{ f(x, y) | f(0, 0) = 0 \}$ not principal.
- $\mathbb{Z}[x]$ is not a PID. $\langle x, y \rangle = \{ f(x) | f(0) \text{ is even} \}$ not principal.

Definition.

- For an integral domain $R, a \in R$ is **prime** if $\langle a \rangle$ is a prime ideal. Equivalently, $a \mid bc \implies$ $a \mid b$ or $a \mid c$.
- 0 \neq a \in R is **irreducible** if it is not a unit and if $a = xy$, then x is a unit or y is a unit.

Proposition. A *prime* element is *irreducible*.

Proof. If a is prime and $a = xy$, then $a \mid x$ or $a \mid y$, so $x = ax'$ or $y = ay'$, so $a = ax'y$ or $a= x a y' \implies a (1-x' y) = 0 \text{ or } a (1-x y') = 0 \implies 1 = x' y \text{ or } x y', \text{ so } y \text{ is a unit or } x \text{ is a }$ unit. ■

Example. Let $R = \mathbb{Z}[\sqrt{-5}] = \{a + b\sqrt{-5} \mid a, b \in \mathbb{Z}\} \subseteq \mathbb{C}$.

It is clear to see that this is closed under multiplication. We claim that $3 \in R$ is irreducible but It is clear to see that this is closed under multiplication. We claim that $3 \in R$ is irreducible but
not prime. We let $3 = (a + b\sqrt{-5})(c + d\sqrt{-5})$, and define the norm as $|a + \sqrt{-5}| := \sqrt{a^2 + 5b^2}$.

Then squaring, $9 = (a^2 + 5b^2)(c^2 + 5d^2)$. Clearly neither of the values can be 3. so $a^2 + 5b^2 = 1$ or $c^2 + 5d^2 = 1$. Thus $(a, b) = (\pm 1, 0) \implies (a + b\sqrt{-5})$ is a unit, or $c + d\sqrt{-5}$ is a unit. Thus 3 is irreducible.

But $3^{2} | (2 + \sqrt{-5})(2 - \sqrt{-5}) \implies 3 | (2 + \sqrt{-5})(2 - \sqrt{-5})$ and $3 | (2 + \sqrt{-5})$ and $3 | (2 - \sqrt{-5})$ Sur 3 | $(2 + \sqrt{5})$ ≠ 3(a + b $\sqrt{-5}$), for a, b ∈ ℤ.

Proposition. If *R* is a PID, then irreducible \implies prime.

Proof. Suppose $a \in R$ is irreducible, then it suffices to show that a is a prime ideal. Then the ideal generated by $a_i(a) \neq R$ since a is not a unit. So there is a maximal ideal M where $(a) \subseteq M \subseteq R$.

Since R is a PID, $M = (b)$ for some $b \implies (a) \subseteq (b) \implies a = bc$ for some c. $(b) \neq R$ so b is not a unit. Since a irredcible, c has to be a unit. So $b = c^{-1}a \implies b \in (a) \implies (b) \subseteq (a)$, so $(a) = (b)$, so (a) maximal and therefore prime.

Proposition. Every prime ideal is maximal in a PID.

Proof. If $I = (a)$ prime, then $(a) \subseteq M \subseteq R$ where M is maximal, then let $M = (b) \implies a \in R$ (b) \implies a = bc. a is prime so it is irredcible, so c is a unit. So $b \in (a) \implies (a) = (b) \implies (a)$ maximal. ■

2.7 Unique Factorization Domains (UFDs)

Definition. Let R be an integral domain. For $a, b \in R$, we say a, b **associates** if $(a) = (b)$. Note: $(a) = (b) \iff a = bu$.

Proof. \Longleftarrow : $(a) \subseteq (b)$ and $b = u^{-1}a \implies (b) \subseteq (a)$. \implies : $a = bx$ and $b = ay \implies a = axy \implies a(1 - xy) - 0 \implies (1 - xy) = 0 \implies x$ is a unit.

Definition. If R is an integral domain, then R is a **unique factorization domain** (UFD) if every non-zero $x \in R$ can be written as a unique product of irreducible elements (up to associates and reordering).

Example. If $x = a_1 \cdots a_r = b_1 \cdots b_m$. Then a_i, b_j all irreducible, and $r = m$ and after reordering, a_i and b_j are associate.

Example. For \mathbb{Z} , the units are ± 1 . Prime elements are $\{\pm p \mid p \text{ prime}\}$. \mathbb{Z} is UFD.

Example. $\mathbb{Z}[\sqrt{-5}]$ is not a UFD.

Proposition. Integral Domain R is a UFD \iff

- 1. Every irreducible element is prime.
- 2. R satisfies the ascending chain condition for principle ideals. Namely, $(a_1) \subseteq (a_2) \subseteq$ $\cdots \subseteq (a_m) \subseteq \cdots$, and $\exists (a_n) = (a_{n+1}) = \cdots$

Proof. \implies : First assume R is a UFD.

(1). If $a \in R$ irreducible and $a \mid bc$, so for $bc = ax$, write b, c, x as a product of irreducible elements, where $b = q_1 \cdots q_l$, $c = y_1 \cdots y_t$, $x = x_1 \cdots x_k$. So $bc = ax \implies q_1 \cdots q_l y_1 \cdots y_t =$ $ax_1 \cdots x_k$. Since R UFD, $\exists q_i$ or y_i associate to a. Assume WLOG $uq_i = a$ for a unit a, so $u^{-1}a = q_i | b \implies b = b'u'a \implies a | b$

(2). $(a) \subseteq (b) \iff b \mid a$. If $(a) \subseteq (b)$, then $a = bc$, where c is a non-unit. So the number of irreducible factors of b <number of irreducible factors of a , so there can't be infinitely many strict inclusion in the chain.

Conversely, assume (1) and (2) holds. To show the existnece of factorization, let for a not unit and cannot be written as product of irreducible elements, let $S = \{(a)\}\)$. We want to show that S is empty using Zorn's lemma. Since S is a partially ordered set (by inclusion), every ascending chain has an upper bound, so by Zorn's lemma, S has a maximal element (a) .

Then when a is not a unit and not irreducible (and since $(a) \in S$), so $a = bc$), where $a = bc, b, c$ not unit. Thus $(a) \subsetneq (b)$ and $(a) \subsetneq (c) \implies (b), (c) \notin S$. So b and c are products of irreducible elements, so a is a product of irredcible elements, which is a contradiction.

Uniqueness: Suppose $a = x_1 \cdots x_n = y_1 \cdots y_m$, where x_i, y_j irreducible. Then $y_1 | x_1 \cdots x_n$ and y_i prime $\implies y_1 | x_i$ for some *i*. So, $x_i = uy_1$ and x_i irreducible $\implies u$ is a unit, so y_1, x_i associates.

Theorem. Every PID is a UFD.

Proof. (1) It is proved that every irreducible element is prime.

(2) If $(a_1) \subset (a_2) \subset \cdots$. Let $I = \bigcup (a_i)$, then I is an ideal. Since R is a PID, we want $I = (b)$. Since $b \in I$, $\exists i$ such that $b \in (a_i)$, so $(b) \subseteq (a_i)$. But $(a_i) \subseteq (b)$, so $(a_i) = (b)$, so $(a_i) = (a_{i+1}) =$ $(a_{i+1}) = ...$

Remark: Fields ⊂ Euclidean Rings ⊂ PIDs ⊊ UFDs ⊊ integral domains ⊂ rings.

Definition. If R is an integral domain and $a, b \in R$. Then d is the **greatest common divisor** of a, b if

- $d | a$ and $d | b$.
- If $d' | a$ and $d' | b$, then $d' | d$

Fact: In a UFD, gcd exists.

For $a = a_1 \cdots a_t a_{t+1} \cdots a_n$, $b = b_1 \cdots b_t b_{t+1} \cdots m$, a_i, b_j irreducible, we can rearrage it so that a_i, b_i associates for $1 \le i \le t$, and otherwise they don't associate. So $gcd(a, b) = a_1 \cdots a_t$.

−
<u>Remark:</u> In ℤ[√ 5], the gcd does not exist.

Fact: In a PID, $gcd(a, b)$ is a "linear combination" of a, b.

If
$$
(a, b) = (d)
$$
, then $d \mid a$ and $d \mid b$ and if $d' \mid a$ and $d' \mid b$, then $(a, b) \subseteq (d') \implies (d) \subseteq (d') \implies d' \mid d$

2.8 Euclidean Domains

Definition. An *integral domain* R is a **Euclidean domain** if there is a map $d : R \setminus \{0\} \longrightarrow$ \mathbb{Z}_+ such that

- if $a, b \in R$, $b \mid a$, then $d(b) \leq d(a)$
- If $a, b \in R \setminus \{0\}, \exists t, r \in R$ such that $a = tb + r$, where $r = 0$ or $d(r) < d(b)$

Example.

- $R = \mathbb{Z}, d(a) = |a|$.
- If $\mathbb{R} = F[x]$ where f is a field, then $d(f(x)) = deg(f)$.
- For any field F , $d(a) = 0 \,\forall a \in F \setminus \{0\}$.

Proposition. Euclidean domains are PIDs

Proof. If $\{0\} \notin I \subseteq R$ is an ideal, then let $a \in I$ be a non-zero element with the smallest degree. We want to claim that $I = (a)$.

If $0 \le b \in I$, we write $b = at + r, r = 0$ or $d(r) < d(a)$. But $r = b - at \in I$, so $d(r) \ge d(a)$, so it has to be that $r = 0$, so $b \in (a)$.

Example. $\mathbb{Z}[i] = \{a + bi \mid a, b \in \mathbb{Z}\}$ is an Euclidean domain.

Proof. Let $d : \mathbb{Z}[i] - \{0\} \longrightarrow \mathbb{Z}_+$ be $d(a+bi) = a^2 + b^2$.

d is multiplicative: $d((a + bi)(a' + b'i)) = d((aa' - bb') + (ab' + a'b)i) = (a^2 + b^2)(a'^2 + b'^2) =$ $d(a+bi)\overline{d}(a'+b'i).$

(1): If $a = bc$, where $a, b, c \neq 0$, then $d(a) = d(b)d(c) \geq d(b)$.

(2): Suppose $x, y \in \mathbb{Z}[i]$ and we want to divide x by y. If $y = n \in \mathbb{Z}_+$, $x = a + bi$ and I write $a = nq + r, r = 0$ or $|r| < n$ and $b = nq' + r, r' = 0$ or $|r'| < \frac{n}{2}$. This is possible since if $a = nq + r, \frac{n}{2} \le r < n$, then $a = n(q + 1) + (r - n), |r - n| < \frac{n}{2}$.

Then $x = a + bi = (nq + r) + i(nq' + r') = n(q + iq') + (r + ir')$, and $d(r + ir') = r^2 + r'^2 <$ $\frac{n^2}{4} + \frac{n^2}{4} = \frac{n^2}{2} < n^2 = d(n).$

Now suppose we are dividing x by an arbitary y, and we use the previous result by letting $n = y\overline{y} = d(y) > 0$. So we can divide $x\overline{y}$ by n where

$$
x\bar{y} = qn + r, \qquad d(r) < d(n) \implies x\bar{y} = q\bar{y}y + r
$$

Then claim that $x = qy + (x - qy)$, where $d(x - qy) < d(y)$. Notice that

$$
d(x - qy)d(\bar{y}) = d(x\bar{y} - qy\bar{y}) = d(r) < d(n) = d(y)^2 \implies d(x - qy) < d(y)
$$

Thus, this result holds.

Example. This is not unique. $3 = (1 + i)(1 - i) + 1$, $d(1) < d(1 - i)$. Also $3 = (2 - i)(1 - i) - i$, $d(-i) < d(1-i)$

Remember that gcd exists in any UFD. So if $d = gcd(a, b)$, then $d | a, d | b$ and $d' | a, d' | b \implies d' | b$ $d' \mid d$.

IF R is a PID, $\exists x, y \in R$, $d = ax + by$.

If R is a Euclidean Domain, and $a, b \in R \neq 0$, I can find the gcd using the following algorithm

$$
a = bq_0r_0 \implies gcd(a, b) = gcd(b, r_0)
$$

\n
$$
b_0 = r_0q_1 + r_1 \implies gcd(b, r_0) = gcd(r_0, r_1)
$$

\n
$$
\vdots
$$

\n
$$
r_{n+1} = r_{n+2}q_{n+3} + 0 \implies gcd = r_{n+2}
$$

2.9 Polynomial Rings

Definition. For any commutative ring R, we define a **polynomial ring**

$$
R[x] = \{a_0 + \dots + a_n x^n \mid a_i \in R\}
$$

If $f(x) = a_n x^n + ... + a_1 x + a_0$, where a_n is the **leading coefficient**, n is the **degree** of $f(x)$, and a_0 is the **constant term**. If $a_n = 1$, then $f(x)$ is **monic**.

Division Algorithm: If R is an integral domain and non-zero $f(x)$, $g(x)$ with $g(x)$ monic, then there are unique polynomials $q(x), r(x) \in R[x]$ such that $f(x) = g(x)q(x) + r(x)$, where $r = 0$ or $deg(r) < deg(g)$.

Proof. For existence, let n be degree of f and m be degree of g, proceed by induction on n.

If $n = 0$, then $f(x) = g(x) \times 0 + f(x)$. $deg(f) = 0 < deg(g)$ if g is non-constant. If g is a constant $= b_0 \neq 0$, then $a_0 = b_0 \frac{a_0}{b_0} + 0$, so still $deg(r) < deg(g)$. Note that $b_0 = 1$ since g monic.

If the statement holds for $deg(f) < n$, I can write $f(x) = a_n x^n + ... + a_0$, $g(x) = x^m + ... + b_0$. Let $f_1(x) = f(x) - a_n x^{n-m} g(x)$. Clearly, since $deg(f_1) < n$, by induction hypothesis, I can write $f_1(x) = g(x)q_1(x) + r_1(x)$, with $r_1 = 0$ or $deg(r_1) < deg(g)$. So rewriting,

$$
f(x) = f_1(x) + a_n x^{n-m} g(x)
$$

= $g(x)q_1(x) + r_1(x) + a_n x^{n-m} g(x)$
= $g(x) \underbrace{q_1 + a_n x^{n-m}}_{q(x)} + r_1(x)$

Uniqueness: $f = gp_q + r_1 = qq_2 + r_2 \implies g(q_1 - q_2) = r_2 - r_1$. Suppose they are not equal. Clearlyt $deg(r_1 - r_2) < deg(g)$. Also, $deg(g(q_1 - q_2) \geq deg(g)$ since R is a UFD (so $deg(f) + deg(g) = deg(fg)$). This is a contradiction unless both sides are 0, so $q_1 = q_2$ and $r_1 = r_2$

■

Remark: If F is a field, the same argument shows for any non-zero $f(x), g(x) \in F[x]$. **Corollary.** If R is an integral domain, $f(x) \in R[x]$ and $a \in R$. Then $f(a) = 0 \iff x - a | f(x)$

Proof. Suppose $f(a) = 0$. Write $f(x) = (x - a)q(x) + r(x)$, where $r = 0$ or $deg(r) \le 0 \implies$ $f(a) = r$. So $f(a) = 0 \iff r = 0$

Corollary. If R is an integral domain and $f(x) \in R[x]$ has degree n, then $f(x)$ has $\leq n$ zeros.

Example. It is important for this to satisfy integral domain property. In \mathbb{Z}_8 , $f(x) = x^2 - 1$ has roots 1, 3, 5, 7

Corollary. If F is a field, $F[x]$ is a Euclidean domain.: $d(f(x)) = deg(f)$. So $F[x]$ is a UFD.

Definition. Let R be a UFD. For non-zero $a_1, ..., a_n \in R$, $d = \gcd(a_1, ..., a_n)$ exists, where a_n is unique up to associates. Then for $f(x) = a_n x^n + ... + a_1 x + a_0 \in R[x]$, the **content** of $f(x), c(x) := \gcd(a_n, ..., a_1, a_0)$. And f is **primitive** if $c(f)$ is a unit.

Lemma. $c(fg) = c(f)c(g)$ up to units.

Proof. Case I: Suppose f, g primitive, want to show that fg is primitive. If $f = a_n x^n + ...$ $a_1x + a_0$, $g = b_mx^m + ... + b_1xb_0$, then $fg = c_{n+m}x^{n+m} + ... + c_1x + c_0$. If fg is not primitive, \exists prime $p \in R$ such that $p \mid c_i \forall i$. However, f, g primitive. Suppose i_0 is the smallest i such that $p \nmid a_i$ and j_0 be the smallest j such that $p \nmid b_j$. Then $p \nmid c_{i_0+j_0}$, where $c_{i_0+j_0} = a_0b_{i_0+j_0} + ...$ $a_{i_0-1}b_{j_0+1} + a_{i_0}b_{j_0} + ... + a_{i_0+j_0}b_0$. This is a contradiction.

Case II: Let f, g be arbitrary. Let $f = c(f)f_1, g = c(g)g_1$, with f_1, g_1 primitive so f_1g_1 primitive. So $fg = c(f)c(g)f_1g_1 \implies c(fg) = c(f)c(g)$

Lemma. If F is the quotient field of R and $f(x) \in R[x]$ is primitive, then $f(x)$ irreducible in $R[x] \iff f(x)$ irreducible in $F[x]$

Proof. \Leftarrow : Suppose $f(x)$ not irreducible in $R[x]$, then $f(x) = f_1(x)f_2(x)$ for f_1, f_2 non-units in $R[x]$. If $deg(f_1) = 0$, then it is a constant $c \implies f = cf_2 \implies c | f \implies c$ unit since f primitive, a contradiction.

Then suppose $deg(f_2), deg(f_1) \geq 1$. Since units of $F[x]$ are non-zero constants, $f(x)$ not irreducible.

 \implies : Suppose $f(x) \in R[x]$ can be written as $f = f_1f_2, f_1, f_2 \in F[x]$, $deg(f_1, f_2) \geq 1$. Write $f_1 = f_2$ $\frac{b_n}{c_n}x^n + \ldots + b_0c_0$, $b_i, c_i \in R$. So if $r_1 = c_1 \cdots c_n \in R$, then $r_1f_1 \in R[x]$. Let $g = cf_1$. Similarly there is $r_2 \in R$ such that $g_2 = r_2 f_2 \in R[x] \implies g_1 g_2 = r_1 r_2 f_1 f_2$. So $g_1 = c(g_1)h_1, g_2 = c(g_2)h_2$ with $h_1, h_2 \in R[x]$ primitive. So $c(g_1)c(g_2)h_1h_2 = r_1r_2f \implies$ taking contents, $c(g_1)c(g_2) =$ r_1r_2 up to units.

So $ucc(g_1)c(g_2) = r_1r_2$ for unit u, so $uh_1h_2 = f \implies (uh_1)h_2 = f$. Combining with $deg(h_1) =$ $deg(g_1) = deg(g_1) \geq 1$, we have f irreducible in $R[x]$.

Example. $f(x) = 2x + 2 \in F[x]$ is irreducible in $\mathbb{Q}[x]$ but not in $F[x]$

Theorem. If *R* is a UFD, then $R[x]$ is a UFD.

Proof. Case 1: If $f(x)$ primitive, then $f(x) \in F[x]$ can be written as $f(x) = f_1(x) \cdots f_n(x)$, where $f_i(x)$ irreducible in $F[x]$. $\exists b_i \in R$ such that $b_i f_i(x) = g_i(x) \in R[x]$.

Then, let $c_i = c(g_i) \implies c_i h_i(x) = b_i f_i(x)$ for some $h_i(x)$ primitive in $R[x]$. Write this as $f_i = \frac{c_i h_i}{b_i}$, so $b_1 \cdots b_n f(x) = c_1 \cdots c_n h_1(x) \cdots h(x)$. Therefore, $b_1 \cdots b_n = c_1 \cdots c_n$ up to units, so $c_1 \cdots c_n = ub_1 \cdots b_n$, so $f(x) = uh_1(x) \cdots h_n(x)$

Uniqueness: If $f(x) = p_1 \cdots p_n(x) = q_1(x) \cdots q_m(x)$, where p_i, q_j irreducible in $R[x]$. Then $f(x)$ primitive $\implies p_i, q_j$ primitive $\forall j \implies$ by the lemma, p_i, q_j irreducible in $F[x]\forall i, j$. Since $F[x]$ is a UFD, $n = m$, $p_- = q_j$ up to reordering and multiplying So $p_i = \frac{a_i}{b_i} q_i$, $a, b \in R \implies$

 $b_i p_i(x) = a_i q_i(x) \implies \text{by } p_i, q_i \text{ primitive that } b_i = a_i \text{ up to a unit, } b_i = u_i a_i \implies u_i p_i = q_i \implies$ $p_i = q_i$ up to unit.

Case 2: Let $f(x) \in R[x]$ be arbitrary, let $c = c(f) \implies f(x) = cg(x)$, where $g(x)$ is primitive. From case 1, we can write $g(x) = g_1(x) \cdots g_n(x)$, where $g_i \in R[x]$ irreducible. Then $f(x) =$ $cg_1(x)\cdots g_n(x)$.

When we factor c in R, $c = c_1 \cdots c_m \implies f(x) = c_1 \cdots c_m g_1(x) \cdots g_n(x)$, all irreducible in $R[x]$.

Uniqueness: Suppose $f(x) = f_1 \cdots f_n = g_1 \cdots g_m$, where $f_i, g_j \in R[x]$ irreducible. Consider cases when their degree is 0 and greater than 0.

Corollary. If R UFD, then $R[x_1, ..., x_n]$ is a UFD for $n \geq 1$.

2.10 Eisenstein Criterion for Irreducibility

Let *R* be UFD, $f(x) = a_n x^n \dots + a_1 x + a_0 \in R[x]$, $n \ge 0$, $a_n \ne 0$.

Theorem. If p is a prime element in R such that

- $p | a_i, 0 \le i < n$
- $p \nmid a_n$
- $p^2 \nmid a_0$

Then, $f(x)$ is irreducible.

Example. $x^2 + y^2 + 1 \in \mathbb{C}[x, y]$ is irredcible

Proof. Consider $R = \mathbb{C}[x]$ as a UFD and $\mathbb{C}[x, y] = \mathbb{C}[x][y]$. Rewrite as $y^2 + (x+1)(x-i)$, where $(x + 1)(x - i)$ irreducible in $R = \mathbb{C}[x]$. We have $x + i|x^2 + 1, x + i| \cdot 1, (x^2 + 1)^2 | x^2 + 1 \implies$ $x^2 + y^2 + 1$ irreducible.

Example. $f(x) = x^{p-1} + x^{p-2} + \cdots + x + 1 \in \mathbb{Z}[x]$ is irreducible for p prime.

Proof. Consider $f(x+1) = (x+1)^p + (x+1)^{p-2} + ... + (x+1) + 1$.

$$
f(x + 1) = \sum_{i=0}^{p} (x + 1)^{i}
$$

=
$$
\sum_{i=0}^{p-1} \sum_{j=0}^{i} {i \choose j} x^{j}, \qquad 0 \le i \le p - 1, 0 \le j \le i
$$

=
$$
\sum_{j=0}^{p-1} {p-1 \choose \sum_{i=j}^{i} {i \choose j}} x^{j}
$$

Set $c_j = \sum_{i=j}^p {i \choose j}$, and I claim that $p | c_j, c_{p-1} = {p-1 \choose p-1} = 1$. Using the identity ${j \choose j} + \cdots + {m \choose j} =$ $\binom{m+1}{j+1}$, $c_j = \binom{p}{j+1} = \frac{p!}{(j+1)!(p-j-1)!}$. Also $c_0 = \binom{p}{1} = 1$, so $p^2 \nmid c_0$. Therefore by eisenstein criterion, $f(x + 1)$ irreducible, so $f(x)$ irreducible.

Proof of Eisenstein Criterion. If $f(x) = g(x)h(x)$ non-units with $g(x) = b_rx^r + \cdots + b_1x + b_0$, $h(x) =$ $c_k x^k + \cdots c_1 x + c_0$. If $deg(g) = 0, g(x) = b_0$ and $b_0 | a_i \forall i \implies$ since f primitive, b_0 is a unit, a contradiction.

So assume $r \geq 1$. Then $p \mid a_0 = b_0 c_0, p^2 \nmid b_0 c_0 \implies$ either $p \mid b_0, p \nmid c_0$ or $p \nmid b_0, p \mid c_0$. Also, $p \nmid a_n = b_r c_k \implies p \nmid b_r$

Now, let $i \geq 1$ be the smallest number such that $p \nmid b_i$, and we have $i \leq r > n$. Then $a_i = b_0c_i + b_ic_{i-1} + ... + b_{i-1}c_1 + b_ic_0$. However, $p \mid a_i$ and $p \mid b_0c_i + b_ic_{i-1} + ... + b_{i-1}c_1$ \implies $p \mid b_i c_0 \implies p \mid b_i$ or $p \mid c_0$, both not true. Therefore contradiction.

3 Modules

Definition. Suppose we have arbitrary ring R and abelian group M such that there is $R \times$ $M \to M$, $(r, m) \mapsto rm$ with distributivity. This is a **left module**, and satisfies the distributivity below:

- $(r + s)m = rm + sm$
- $r(m_1 + m_2) = rm_1 + rm_2$
- $(rs)m = r(sm)$
- \bullet 1_Rm = m

Fact: If R is a field, then this is a vector space.

Modules also satisfy the following properties:

- $r0_M = 0_M$
- \bullet 0_Rm = 0_M
- \bullet $(-r)m = -(rm)$

Definition. If $\emptyset \neq N \subset M$, then N is a **submodule** if it is a subspace of M and $r \in R$, $n \in \mathbb{Z}$ $N \implies rn \in N$.

Example.

- Let R be a ring and R be a module over R . Submodules are (left) ideals in this case.
- Every abelian group is a module over \mathbb{Z} . Then submodules correspond to subgroups.

Definition. If M, N are R modules, then $f : M \to N$ is a R-homomorphism if f is a group homomorphism and $f(rm) = rf(m) \forall r \in R, m \in M$. Note that $ker(f) \subset M$ as a submodule, and $im(f) \subseteq N$ as a submodule.

<u>Remark:</u> If *f* is an isomorphism, $f^{-1}: N \to M$ is also a *R*-homomorphism.

3.1 Isomorphism Theorems

If $N \subseteq M$ is a submodule, then M/N has the structure of a R-module.

$$
r(m+N) := rm + N
$$

well-defined: Does $m + N = m' + N \implies r(m + N) = r(m' + N)$?. yes, because $m - m' \in N$ and $r(m - m') \in N$

Isomorphism Theorem 1: If $f : M \to N$ is a R-homomorphism, then

$$
M/\ker(f) \simeq im(f)
$$
 as *R*-modules

Theorem 2: If N_1, N_2 are submodules of M, then $N_1 + N_2 := \{x + y \mid x \in N_1, y \in N_2\}$ is a submodule of M, and $N_1 \cap N_2$ is also a submodule of M, and

$$
\frac{N_2}{N_1 \cap N_2} \simeq \frac{N_1 + N_2}{N_1}, \quad f: N_2 \to \frac{N_1 + N_2}{N_1}, \ f(n_2) = n_2 + N_1
$$

Theorem 3: If $N \subseteq M$ and $K \subseteq N$ are submodules, then N/K is a submodule of M/K , and

$$
\frac{M/K}{N/K} \simeq M/N
$$

Theorem 4: If $N \subseteq M$ is a submodule, the canonical map $M \to M/N, m \mapsto m + N$ induces a 1-1 correspondence between submodules of M/N and submodules of M containing N

3.2 Direct Product and Sum of Modules

Let R be an arbitray ring and $\{M_i\}_{i\in\mathcal{I}}$ be a family of R-modules. The **direct product** is defined as

$$
\prod_{i \in \mathcal{I}} M_i = \{(x_i)_{i \in \mathcal{I}} \mid x_i \in M_1\}, \ r(x_i)_{i \in \mathcal{I}} = (rx_i)_{i \in \mathcal{I}}
$$

Direct Sum is defined $\bigoplus_{i \in \mathcal{I}} M_i = \{(x_i)_{i \in I} \mid x_i \in M_i$, all but finitely zero}

Remark: If *M* is a module and $N_1, N_2 \subseteq M$ are submodules such that

- $M_1 \cap M_2 = \{0\}$
- $M_1 + M_2 = M$

Then $M \simeq M_1 \oplus M_2 \simeq M$, $(m_1, m_2) \mapsto m_1 + m_2$.

3.3 Exact Sequences

Definition. Let R be a ring and M, M', M'' be R -modules. A sequence of R -homomorphism $M' \stackrel{f}{\longrightarrow} M \stackrel{g}{\longrightarrow} M''$ is called **exact** if $im(f) = ker(g)$. More generally, sequence $M_1 \stackrel{f_1}{\longrightarrow} M_2 \stackrel{f_2}{\longrightarrow}$ M_3 is **exact** if $im(f_i) = ker(f_{i+1}).$

Example. The sequence $0 \to M' \xrightarrow{f} M$, is *exact* if and only if f is injective.

Example. The sequence $M \xrightarrow{g} M'' \to 0$ is *exact* if and only if g is surjective

Definition. If $0 \to M' \xrightarrow{f} M \xrightarrow{g} M'' \to 0$ is an exact sequence, then it is called a **short exact sequence**

Example. If $N \subseteq M$ is a submodule, $0 \longrightarrow N \longrightarrow M \longrightarrow M/N \longrightarrow 0$.

Proposition. Let $0 \longrightarrow M' \frac{f}{\psi} M \frac{g}{\phi} M'' \longrightarrow 0$ be a short exact sequence of R-modules. Then the following conditions are equivalent.

- 1. $\exists R$ -homomorphism $\phi : M'' \to M$ such that $g \circ \phi = id_{M''}$
- 2. $\exists R$ -homomorphism $\psi : M \to M'$ such that $\psi \circ f = id_{M'}$

and they imply $M \simeq M' \oplus M''$. In this case, we say the sequence **splits**

Example. $R = \mathbb{Z}_4, M = \mathbb{Z}_4, N = \{0, 2\}$. Then $0 \to N \to \mathbb{Z}_4 \to \mathbb{Z}_4/N \to 0$. Notice that $\psi(1) = 0 \implies \psi(2) = 0$ and $\psi(1) = 2 \implies \psi(2) = 0$. Therefore this does not split.

Proof of Proposition. (1) \implies (2) : If $m \in M$, then $g(\phi(g(m))) = g(m) \implies g(m - \phi(g(m))) =$ $0 \implies m - \phi(g(m)) \in ker(g) = im(f) \implies \exists! x \in M' \text{ such that } f(x) = m - \phi(g(m)).$

Let $\psi(m) = x$. We need to check that ψ is a R-homomorphism (exercise), and $\psi \circ f = id_{M'}$: if $y \in M'$, let $m = f(y)$. Then $m - \phi(g(m)) = f(y) - \phi(g(f(y)))$ \equiv_0 $) = f(y)$. By definition of

$$
\psi : \psi(m) = y \implies \psi(f(y)) = y \,\forall y
$$

(2) \implies (1): Suppose $x \in M''$, then $\exists y \in M$ such that $g(y) = x$. Then let $\phi(x) = y - f(\psi(y))$.

This is well-defined: If $y' \in M$ such that $g(y') = x$. I want to check that $y - f(\psi(y)) =$ $y' - f(\psi(y'))$, or $y - y' = f(\psi(y - y'))$. But $g(y - y') = 0$. Since ker $(g) = im(f)$, $\exists z \in$ M' such that $y - y' = f(z) \implies f(\psi(y - y')) = f(\psi(f(z))) = f(z) = y - y'$. So ϕ well-defined.

Also $g \circ \phi = id_{M''}$: If $x \in M''$, $\phi(x) = y - f(\psi(y))$ for some $y \in M$ with $g(y) = x$, so $g(\phi(x)) = g(y) - g(f(\psi(y))) = g(y) = x$, since $g \circ f = 0$. Also ϕ is a R-homomorphism, since $\forall r, s \in R, x_1, x_2 \in M''$, $\phi(rx_1 + sx_2) = r\phi(x_1 + s\phi(x_2)).$

Direct Sum: Define

$$
M' \oplus M'' \xrightarrow{\alpha} M, (x, y) \mapsto f(x) + \phi(x)
$$

$$
M \xrightarrow{\beta} M' \oplus M'', m \mapsto (\psi(m), g(m))
$$

Then $\beta \circ \alpha(x, y) = \beta(f(x) + \phi(y)) = (x, y)$, since $\psi \circ \phi = 0$ (Show this as an exercise:)

3.4 Module Homomorphism

Definition. Let M, N be R-module, with $Hom_R(M, N)$ being the set of R-homomorphism $f: M \longrightarrow N$, and $Hom_R(M, N)$ has the structure of an R-module.

Let $f, g \in Hom_R(M, N)$ if $f + g \in Hom_R(M, N)$. Note $(rf)(m) = rf(m), (f + g)(m) =$ $f(m) + g(m)$. We have

$$
Hom_R(M, N) \xrightarrow{-\circ f} Hom_R(M', N)
$$

\n
$$
Hom_R(N, M') \xrightarrow{f \circ \rightarrow} Hom_R(N, M)
$$

\n
$$
M' \xrightarrow{f} M
$$

\n
$$
g' \xrightarrow{\nearrow} M
$$

\n
$$
g' \xrightarrow{\nearrow} M
$$

\n
$$
N'
$$

Lemma. If $0 \longrightarrow M' \stackrel{f}{\rightarrow} M \stackrel{g}{\rightarrow} M'' \rightarrow 0$ is a short exact sequence of R-modules and N is a R-module, then

$$
\begin{aligned} (1). \quad & 0 \to Hom_R(N, M') \xrightarrow{\psi} Hom_R(N, M) \xrightarrow{\phi} Hom_R(N, M'') \text{ exact} \\ (2). \quad & 0 \to Hom_R(M'', N) \to Hom(M, N) \to Hom(M', N) \text{ exact} \end{aligned}
$$

 $Hom_R(N, M') \to_R Hom(N, M)$ injective: If $f \circ \alpha = 0$ for some $\alpha \in Hom_R(N, M')$, then since f injective, $\alpha = 0$.

 $\phi \circ \psi = 0 (\implies im(\psi) \subset ker(\phi)) : \text{If } \alpha \in Hom_R(N, M')$, then $\phi \circ \psi(\alpha) = g \circ f \circ \alpha = 0$, where $g \circ f = 0$ since it is exact.

If $\beta \in \text{ker}(\phi)$, then $g \circ \beta = 0$, so for any $x \in N$, $g(\beta(x)) = 0$, so $\beta(x) \in im(f) \implies$ there is a unique $y \in M'$ such that $f(y) = \beta(x)$. Let $\alpha : N \to M'$ be defined by $\alpha(x) = y$, then α is a *R*-homomorphism (Exercise). And clearly $\beta = f \circ \alpha$, so $\beta \in im(\psi)$

<u>Remark:</u> If $M' \subseteq M$ is a submodule, then $0 \to M' \to M \to M/M'$ is a short exact sequence. If $g: M \to M''$ is a surjective R homomorphism, then $0 \to \text{ker}(g) \to M \to M'' \to 0$ is a short exact sequence.

3.5 Free Module

Definition. If M is a R-module, and $S \subset M$ is a **basis** if $\forall m \in M, m = r_1 s_1 + ... + r_k s_k$ in a *unique* way with $r \in R$, $s \in S$. Equivalently, if $0 = r_1 s_1 + ... + r_k s_k$, then $r_1 = ... = r_k = 0$. If ${s_i}_{i∈\mathcal{I}}$ is a basis for M , then $M \simeq \bigoplus_{i \in \mathcal{I}} R$. Then, M is **free** is it has a *basis*.

Definition. If R is a ring and P is a R-module, then P is a **projective module** if it satisfies the following:

1. If g, ϕ are R homomorphism, $\exists \psi : P \to M$, R-homomorphism such that $g \circ \psi = \phi$

- 2. If $0 \to M' \to M \to P \to 0$ is exact, then it splits.
- 3. There is a *R*-module *N* such that $N \oplus P$ is a *free module*.
- 4. If $0 \to M' \to M \to M''$ is exact, then

$$
0 \to Hom(P, M') \to Hom(P, M) \to Hom(P, M'') \to 0
$$

is exact.

(1) \implies (2). If $0 \to M' \to M \to P \to 0$ is exact, then by (1) $\exists \psi : P \to M$ such that $q \circ \psi = id_P$, so the sequence splits

■

(2) \implies (3). Let $\{x_i\}_{i\in\mathcal{I}}$ be a generating subset of P as a R-module. Then, $g : \bigoplus_{i\in I} R \to$ $P, (r_i)_{i\in I}\mapsto \sum_{i\in I}r_ix_i$. is surjective. Then, $0\to ker(g)\to \bigoplus_{i\in I}R\to P\to 0$ is a short exact sequence. By (2) this splits, so free R-module $\bigoplus_{i\in I} R \simeq \ker(g) \oplus P$. $(3) \implies (4)$. It is enough to show that $Hom(P, M) \to Hom(P, M'')$ is surjective. If P is free and $(x_i)_{i\in I}$ is a basis for P and let $y_i = \phi(x_i)$ and $z_i \in m$ such that $g(z_i) = y_i$. Then let $\psi(x_i) = z_i$ and $\psi(\sum r_i x_i) = \sum r_i z_i$. Then $g \circ \psi = \phi$. If $N \bigoplus P$ is free, then $\phi(r, p) = \phi(p)$ is a R homomorphism, $\exists \psi : N \oplus P \to M$ such that $g \circ \psi = \phi$. Define $\psi : P \to M$, $\psi(p) = \psi(n, p)$, then $g \circ \psi = \phi$.

(4) \implies (1). The surjective map $g : M \to M'$ gives a short exact sequence $0 \to \ker(g) \to$ $M \to M'' \to 0$. So by (4) there is a surjective map $Hom(P, M'') \to Hom(P, M)$. This is exactly 1. \blacksquare

■

Example. $R = \mathbb{Z}_6$. Let \mathbb{Z}_6 be a \mathbb{Z}_6 -module and $I_1 = \{0, 3\}$, $I_2 = \{0, 2, 4\}$. Then $I_1 \cap I_2 = \{0\}$ and $I_1 + I_2 = \mathbb{Z}_6 \implies \mathbb{Z}_6 = I_1 + I_3$. So by 3, I_1, I_2 are projective modules but not free.

3.6 Finitely Generated Modules over PIDs

Theorem. If R is a PID and M is a finitely generated module over R , then

$$
M \simeq R \oplus \cdots \oplus R \oplus \frac{R}{p_1^{n_1}} \oplus \cdots \oplus \frac{R}{p_k^{n_k}}
$$

where $p_1, ..., p_k$ are irredcible (prime) elements of R. In particular, finitely generated projective modules are free over R.

Let R be an integral domain and M be a R-module, $m \in M$. m is torsion if there is $0 \neq r \in$ R such that $rm = 0$. So let M_{tor} be set of torsion elements in M, so M_{tor} is a submodule, where $m_1, m_2 \in M_{tor} \implies m_1 + m_2 \in M_{tor}$. M is <u>torsion</u> if $M = M_{tor}$, and if <u>torsion-free</u> if $M_{tor} = \{0\}$. Free modules are torsion-free.

Recall that for abelian groups, torsion free does not imply free, take Q as example. Meanwhile, torsion free and finitely generated implies free group.

However in arbitrary integral domain, torsion free and finitely generated does *not* imply free group. One example would be $R = \mathbb{C}[x, y]$, $M = (x, y)$ [proof of example not written down]

Fact: Suppose R is a PID

- A submodule of a finitely generated R -module is finitely generated
- If *M* is finitely generated *R*-module, then $M \simeq M_{tor} \oplus N$ for a free *R*-module *N*.

Note, making it a PID makes everything similar to $\mathbb Z$

3.7 Tensor Products

Let R be a ring and M, N be R-modules. Let F be a free module generated by elements $(m, n), m \in M, n \in N$. $F = \{r_1(m_1, n_1) + ... + r_k(m_k, n_k) | r_i \in R, m_i \in M, n_i \in N\}$. *D* is the submodule of F generated by elements of the forms below

- $(m_1 + m_2, n) (m_1, n) (m_2, n)$,
- $(m, n_1 + n_2) (m, n_1) (m, n_2)$
- $(rm, n) r(m, n)$
- $(m, rn) r(m, n)$

with $r \in R, m, m_1, m_2 \in M, n, n_1, n_2 \in N$.

Let $T := F/D$ be an R-module. Note there is a map $\alpha : M \times N \longrightarrow T$, $\alpha(m, n) = (m, n) + D$. This map is <u>bilinear</u>: $\alpha(r_1m_1 + r_2m_2, n) = r_1\alpha(m_1, n) + r_2\alpha(m_2, n)$ and $\alpha(m, r_1n_1 + r_2n_2) =$ $r_1\alpha(m, n_1) + r_2\alpha(m, n_2)$

Proof of above requires us to show $(r_1m_1 + r_2m_2, n) - r_1(m_1, n) - r_2(m_2, n) \in D$. Rewrite expression into $((r_1m_1+r_2m_2, n)-(r_1m_1, n)-(r_2m_2, n))+(r_1m_1, n)-r_1(m_1, n))+(r_2m_2, n)$ $r_2(m_2, n)$

T has the following *universal property*: If Q is a R-module and $\phi : M \times N \longrightarrow Q$ is a bilinear map, then there is a unique R-homomorphism $\psi : T \to \mathbb{Q}$ with $\phi = \psi \circ \alpha$, and define $\psi((r_1(m_1, n_1) + ... + r_k(m_k, n_k)) + D) = r_1\phi(m_1, n_1) + ... + r_k\phi(m_k, n_k).$

We need to check that ψ is well-defined and is a R-homomorphism. For well-defined, it suffices to show that elements \in *D*.

We denote **tensor product** of M and N as $M \otimes_R N = T = F/D$. Any element is of the form

$$
r_1(m_1, n_1) + \ldots + r_k(m_k, n_k) + D = \underbrace{(r_1 m_1, n_1) + \ldots + (r_k m_k, n_k) + D}_{:=r_1 m_1 \otimes n_1 + \ldots + r_k m_k \otimes n_k}
$$

Proposition. The following properties are satisfied:

- 1. $m \otimes (n_1 + n_2) = m \otimes n_1 + m \otimes n_2$
- 2. $(m_1 + m_2) \otimes n = m_1 \otimes n + m_2 \otimes n$
- 3. $(rm) \otimes n = r(m \otimes n) = m \otimes (rn)$
- 4. $0 \otimes n = 0 = m \otimes 0$

Example.

- $\mathbb{Z}_p \otimes_{\mathbb{Z}} \mathbb{Q} = \{0\}: a \otimes \frac{b}{c} = a \otimes \frac{bp}{cp} = pa \otimes \frac{b}{cp} = 0 \otimes \frac{b}{cp} = 0.$
- $\mathbb{Z}_2 \otimes \mathbb{Z}_3 = \{0\} : 0 \otimes x = 0, 1 \otimes 0, 2 = 0$. Finally $1 \otimes 1 = 1 \otimes (2+2) = 2 \otimes 1 + 2 \otimes 1 = 0 + 0 = 0$.
- $gcd(m, n) = 1, \mathbb{Z}_m \otimes_{\mathbb{Z}} \mathbb{Z}_n = \{0\}$

Proposition. If M, N, P are R-modules, then

- $M \otimes_R N \simeq N \otimes_R M$
- $(M \otimes_R N) \otimes_R P \simeq M \otimes_R (N \otimes_R P)$
- $M \otimes_R (N \oplus P) \simeq M \otimes_R N \bigoplus M \otimes_R P$
- $M \otimes_R R \simeq R \otimes_R M \simeq M$

Proposition 1 Proof. $M \times N \stackrel{\alpha}{\rightarrow} N \otimes M$ is clearly bilinear, $(m, n) \mapsto n \otimes m$

By the universal property, we have R-homomorphism $\psi(m \otimes n) = \alpha(m,n) = n \otimes m$. Conversely, $\exists R$ -homomorphism $\phi: N \otimes M \to M \otimes N$, and $n \otimes m \mapsto m \otimes n$, and $\phi \circ \psi$ and $\psi \circ \phi$ are identity maps.

Proposition 2 Proof. Fix $m \in M$ and define $\alpha_m : N \times P \to (M \otimes N) \otimes P, (n, p) \mapsto (m \otimes P)$ $n) \otimes p$. Then, α_m is bilinear: $\alpha_m(n, p_1 + p_2) = \alpha_m(n, p_1) + \alpha_m(n, p_2) \cdot \alpha_m(n_1 + n_2, p) =$ $\alpha_m(n_1, p) + \alpha_m(n_2, p)$. $\alpha_m(m, p) = r\alpha_m(n, p)$. $\alpha_m(n, rp) - r\alpha_m(n, p)$. Together, this implies that $\exists R$ -homomorphism $\psi_m : N \otimes P \longrightarrow (M \otimes N) \otimes P$.

Now, we have a bilinear map $\psi : M \times (N \otimes P) \to (M \otimes N) \otimes P$, $\psi(m, x) = \psi_m(x)$ and show that this is bilinear.

- $\psi(m, x_1 + x_2) = \psi(m, x_1) + \psi(m, x_2)$
- $\psi(m, rx) = r\psi(m, x)$

So ψ_m is a R-homomorphism. Also $\psi(m_1 + m_2, x) = \psi(m_1, x) + \psi(m_2, x)$ and $\psi(rm, x) =$ $r\psi(m,x)$ so $\psi_{m_1+m_2} = \psi_{m_1} + \psi_{m_2}$.

Since there is a bilinear map, $\exists R$ -homomorphism $\gamma : M \otimes (N \otimes P) \to (M \otimes N) \otimes P$, $m \otimes (n \otimes p) =$ $(m \otimes n) \otimes p$.

Similarly, there is a R-homomorphism β : $(M \otimes N) \otimes P = M \otimes (N \otimes P)$, $(m \otimes n) \otimes p \mapsto m \otimes (n \otimes p)$. γ , β are inverse maps, so they are isomorphisms.

Proposition 4 Proof. There is a binear map $M \times R \stackrel{\alpha}{\to} M$, $(m, r) \mapsto rm$ bilinear. So there is an R-homomorphism $\psi : M \otimes R \to M$, $m \otimes r \mapsto rm$. Also there is an R-homomorphism $\phi : M \to$ $M \otimes R, m \mapsto m \otimes 1$. $\psi \circ \phi = id, \phi \circ \psi(m \otimes r) = \phi(rm) = rm \otimes 1 = m \otimes r \implies \phi \circ \psi = id \implies \phi$ **isomorphism.** \blacksquare

Example. Consider $R[x] \otimes_R R[x]$, where R is a commutative ring, we claim that $R[x] \otimes R[x] \simeq$ $R[x, y]$.

Let $\phi: R[x] \otimes_R r[x] \rightarrow R[x, y]$ be the R-homomorphism induced by the bilinear map $R[x] \times R[x]$ $R[x] \longrightarrow R[x, y], (f(x), g(x)) \mapsto f(x)g(y).$

To define ψ , note that $R[x,y]$ is a free module over R with basis $x^i y^j, 0\leq i,j.$ Let $\psi:R[x,y]\rightarrow\mathbb{R}$ $R[x]\otimes_R R[x]$ be such that $\psi(x^iy^j)=x^i\otimes x^j.$

 ϕ, ψ are inverse maps: $x^i y^j \xrightarrow{\psi} x^i \otimes x^j \xrightarrow{\phi} x^i y^j$, $f(x) \otimes g(x) = \sum_{i,j} c_{i,j} x^i \otimes x^j, x^i \otimes x^j \xrightarrow{\psi} x^i y^j \xrightarrow{\psi}$ $x^i\otimes x^j$.

Proposition. Let $0 \to M' \to M \to M'' \to 0$ be a short exact sequence of R-modules, and let N be an R module, then

$$
M' \otimes_R N \to M \otimes_R N \to M'' \otimes_R N \to 0
$$

is exact. Here, $M'\stackrel{f}{\to} M$ induces $M'\otimes N\stackrel{f\otimes id}{\longrightarrow} M\otimes N$, $\sum m_i'\otimes n_i\mapsto \sum f(m_i')\otimes n_i.$

Lemma. Let M, N, Q be R modules, then $Hom_R(M \otimes_R N, Q) \simeq Hom_R(M, Hom_R(N, Q)).$

Corollary. If
$$
Q = R
$$
, $(M \otimes_R N)^{\vee} \simeq Hom_R(M, N^{\vee})$.

Example. Let k be a field, $R = k[x, y]/(x, y)$, $M = R/(x)$, $N = R/(y)$. Then, $M \otimes_R N =$ $R/(x) \otimes R(y) \simeq R/(x, y)$. Also, $(M \otimes_R N)^{\vee} \simeq (R/(x, y))^{\vee} = Hom_R(R/(x, y), R) = \{0\}.$

Also, $M^{\vee} = Hom(R/(x), R) \simeq M, N^{\vee} = Hom(R/(y), R) \simeq N$. Consider $\phi : R/(x) \to R, 1 \mapsto$ $\overline{f}, 0 = \overline{x} \mapsto \overline{xf} = 0, f \in k[x, y] \implies xf \in (xy) \implies f \in (y).$ So $M^{\vee} \otimes N^{\vee} \simeq M \otimes N \simeq R/(x, y) \neq \{0\}.$

Proposition Proof using Lemma. If $M' \to M \to M'' \to 0$ is exact, then let Q be an arbitrary R-module and take $\overline{Hom}(-, Hom_R(N,Q))$. Then we have exact sequence

 $0 \to Hom(M'', Hom_R(M'', Q)) \to Hom_R(M, Hom_R(N, Q)) \to Hom_R(M, Hom(N, Q))$

So we have an exact sequence

$$
0 \to Hom_R(M'' \otimes N, Q) \to Hom_R(M \otimes N, Q) \to Hom_R(M' \otimes N, Q)
$$

So by homework 9 question, $M' \otimes_R N \to M \otimes_R N \to M'' \otimes_R N \to 0$ is exact.

Example. Let $0 \to \mathbb{Z} \xrightarrow{f} \mathbb{Z} \to Z_2$ be a short exact sequence of \mathbb{Z} -modules and tensored with \mathbb{Z}_2 , where $f : a \mapsto 2a$.

Then, $\mathbb{Z} \otimes \mathbb{Z}_2$ $\simeq \mathbb{Z}_2$ $\rightarrow \mathbb{Z} \otimes \mathbb{Z}_2$. [fill in from notes]

Proof of Lemma. Define $\phi: Hom_R(M \otimes_R N, Q) \to Hom_R(M, Hom_R(N, Q))$, where $(\alpha: M \otimes_R M)$ $N \to P$) $\mapsto (\beta : M \to Hom_R(N, Q))$. $\beta : m \mapsto \beta_m, \beta(n) = \alpha(m \otimes n) \in Q$.

I need to show that β is R-homomorphism, ϕ is R-homomorphism.

β homomorphism: $β ∈ Hom_R(M, Hom_R(N, Q))$: Show that $β_{r_1m_1+r_2m_2} = r_1β_{m_1} + r_2β_{m_2}$. So, $\beta_{r_1m_1+r_2m_2}(n)=\alpha((r_1m_1+r_2m_2)\otimes n)=\alpha(r_1(m_1\otimes n)+r_2(m_2\otimes n))$, and $(r_1\beta_{m_1}+r_2\beta_{m_2})(n)=$ $r_1\alpha(m_1\otimes n)+r_2\alpha(m_2\otimes n)$, which is true

 ϕ homomorphism shown similarly.

Also define $\psi : Hom_R(M, Hom_R(N, Q)) \to Hom_R(M \otimes_R N, Q)$ with $\beta : M \to Hom_R(N, Q)$ given. Define bilinear map $M \times N \to Q$, $(m, n) \mapsto \beta(m)(n)$, this gives a map $\alpha : M \otimes_R N \to Q$. So ϕ , ψ are inverse maps.

Definition. A module F is flat if for any short exact sequence $0 \to M' \xrightarrow{f} M \xrightarrow{g} M'' \to 0$, the following sequence is exact:

$$
0 \to M' \otimes F \xrightarrow{f \otimes id} M \otimes F \xrightarrow{g \otimes id} M'' \otimes F \to 0
$$

Equivalently, F is **flat** if for any R-homomorphism $f : M' \to M$, $M' \otimes F \to M \otimes N$ is injective.

Example. \mathbb{Z}_2 is not a flat Z-module. Consider $\mathbb{Z} \to \mathbb{Z}$, $n \mapsto 2n$. $\mathbb{Z} \otimes \mathbb{Z}_2 \to \mathbb{Z} \otimes \mathbb{Z}_2$, $a \otimes b \mapsto$ $2a \otimes b = a \otimes 2b = 0$. Not injective, so this is not flat.

Example. Suppose R is an integral domain:

• Free modules are flat. If F is a free R-module, $F \simeq \bigoplus_{i \in I} R_i$, $f : M' \to M$ is an injective map that gives the following injectvitiy.

$$
M' \otimes F \qquad M' \otimes (\bigoplus_{i} R) \qquad \bigoplus_{i} M' \otimes R \qquad \bigoplus_{i} M' \qquad \cong \qquad \bigoplus_{i} M' \otimes R \qquad \qquad \bigoplus_{i} M' \qquad \cong \qquad \bigoplus_{i} M' \qquad \cong \qquad \bigoplus_{i} M \qquad \cong \qquad \bigoplus_{i} M
$$

$$
M \otimes F \qquad \qquad M \otimes (\bigoplus_{i} R) \qquad \qquad \bigoplus_{i} M \otimes R \qquad \qquad \bigoplus_{i} M
$$

- More generally, projective modules are flat. If P is projective, $\exists P'$ such that for a free module F, $F = P \oplus P'$. Then if $M' \to M$ is injective, then $M' \otimes F \to M \otimes F$ by the previous example. So $M' \otimes P \bigoplus M' \otimes P' \longrightarrow M \otimes P \bigoplus M \otimes P'$ is an injective map $\implies M' \otimes P \to M \otimes P$ is injective.
- Flat module does not necessarily imply projective modules. $\mathbb Q$ as a $\mathbb Z$ -module is flat. [Check 11/29 minute 30 for proof] But \overline{Q} is not projective. Suppose $\overline{Q} \oplus P'$ is free, then pick a basis and write $(1, 0) = \lambda_1 x_1 + ... + \lambda_n x_n$, $x_1, ..., x_n$ part of a basis and $\lambda_1, ..., \lambda_n \in \mathbb{Z}$. Pick N where $N > |\lambda_1|, ..., |\lambda_n|$. Then write $(\frac{1}{N}, 0)$ as a combination of basis elements, where $(\frac{1}{N}, 0) = c_1x_1 + ... + c_nx_n$, where $c_1, ..., c_n \in \mathbb{Z}$ may be 0. So $(1, 0) = Nc_1x_1 + ... +$ Nc_nx_n . If $c_i \neq 0$, then $|Nc_i| > |\lambda_i|$, so they cannot be equal.
- If F is a flat R-module, then it is torsion-free. We need to show that if $0 \neq x \in F$ and $0 \neq r \in R$, then $rx \neq 0$. Let $R \xrightarrow{f} R$, $s \mapsto rs$ be multiplication by r. Then f is injective since R is an integral domain. So, $R \otimes F \xrightarrow{f \otimes id} R \otimes F$ is injective. $0 \neq 1 \otimes x \mapsto r \otimes x = 1 \otimes rx$. So $1 \otimes rx \neq 0, rx \neq 0$

Note: Free \implies Projective \implies Flat \implies Torsion-free

Let $R \xrightarrow{f} S$ be a ring homomorphism.

- Any *S*-module *M* has the structure of an *R*-module, $rm : f(r)m$
- Now, suppose N is a module over R. $N \otimes_R S$ is a R-module which has the structure of *S*-module, $s(n_1 \otimes s_1) := n_1 \otimes ss_1$

If $\phi : N_1 \to N_2$ is a R-homomorphism, $\phi \otimes id : N_1 \otimes S \to N_2 \otimes_R S$ is a S-homomorphism.

4 Category Theory

Definition. A category C consists of a collection (class) of objects $Obj(C)$. For any two objects A, B of C, a set of morphisms $Hom_{\mathcal{C}}(A, B)$ satisfies for any object $A \subset Obj(\mathcal{C})$, there is a morphism $1_A \in Hom_{\mathcal{C}}(A, A)$ and a composition function $Hom_{\mathcal{C}}(A, B) \times Hom_{\mathcal{C}}(B, C) \longrightarrow$ $Hom_{\mathcal{C}}(A, C), (f, g) \mapsto gf$. which is associative: $(hg)f = h(gf), f1_A = f, 1_Bf = f$.

$$
A\stackrel{f}{\to} B\stackrel{g}{\to} C\stackrel{h}{\to} D
$$

Example.

- C is a category of sets $Obj(set)$, and $Hom_{set}(A, B)$ are functions from A to B.
- Let S be a set with a relation \sim that is reflexive and transitive, and C is a category $obj(\mathcal{C})$. $Hom_{\mathcal{C}}(a, b) = \phi$ if $a \nsim b$ and $\{(a, b)\}\$ if $a \sim b$.

 $a \in obj(\mathcal{C}), 1_a = (a, a)$ with composition $(a, b) \in Hom(a, b), (b, c) \in Hom(b, c)$ therefore $(b, c)(a, b) = (a, c).$

• Let C be a category, $A \in Obj(\mathcal{C})$ and \mathcal{C}_A be a new catory, where objects are morphism from any object of C to A .

$$
Hom_{\mathcal{C}_A}(f,g) = \{ \sigma \in Hom_{\mathcal{C}}(B,C) \mid g\sigma = f \}
$$

and $Hom_{\mathcal{C}_A}(f,g) \times Hom_{\mathcal{C}_A}(g,h) \to Hom_{\mathcal{C}_A}(f,h), (\sigma, \alpha) \mapsto \alpha\sigma$. So $h(\alpha\sigma) = (h\alpha)\sigma =$ $g\sigma = f$, and $1_Bf = f$.

4.1 Morphisms

Definition. Let C be a category, $f \in Hom_{\mathcal{C}}(A, B)$. Then f is an **isomorphism** if it has a twosided inverse under composition with $g \in Hom(B, A)$ so that $gf = 1_A$, $fg = 1_B$. This inverse is unique, and is denoted by f^{-1} .

This has the properties that

- $(1_A)^{-1} = 1_A$
- $(fg)^{-1} = g^{-1}f^{-1}$
- $(f^{-1})^{-1} = f$

Example.

- If $\mathcal C$ is a set, then isomorphism are bijections.
- \sim on *S*: (a, b) is an isomorphism $\iff b \sim a$

Definition. $f \in Hom_{\mathcal{C}}(A, B)$ is a **monomorphism** if $\forall C \in Obj(\mathcal{C})$ and $g_1, g_2 \in Hom_{\mathcal{C}}(A, C)$ with fg_1 , fg_1 , we have $g_1 = g_2$.

Definition. f is an **epimorophism** if $\forall C \in Obj(C), h_1, h_2 \in Hom_C(B, C)$ with $h_1 f = h_2 f$, we have $h_1 = h_2$

Example.

- For $\mathcal C$ a set, a monomorphism is injective and epimorphism is surjective.
- For S , \sim , all morphisms are monomorphism and epimorphism.

4.2 Initial and Final Objects

Definition. For category $C, I \in Obj(\mathcal{C})$ is **initial** if for any $A \in Obj(\mathcal{C}), Hom_{\mathcal{C}}(I, A)$ has one element. $F \in Obj(\mathcal{C})$ is **final** if for any $A \in Obj(\mathcal{C})$, then $Hom_{\mathcal{C}}(A, F)$ has one element.

Example.

- For $\mathcal C$ a set, \emptyset is the initial object, any singleton set is a final object.
- For (S, \sim) with (\mathbb{Z}, \leq) , there is no initial or final object.

Note: Initial and final objects are unique up to isomorphism.

Example.

- For category of sets, initial object is ∅ and final object is singleton set.
- For category of groups, initial object is $\{e\}$ and final is also $\{e\}$.
- For category of rings, intial object is \mathbb{Z} , final object is $\{0\}$.
- For category of R-modules, initial element is $\{0\}$ and final is $\{0\}$.
- For category of fields, there are no initial and final objects

Definition. A category C is a **groupoid** if every morphism is an isomorphism.

Example. If \sim on *S* is an equivalence relation,

$$
a \xleftrightarrow{\begin{array}{c} (ab) \\ \longmapsto \\ (ba) \end{array}} b
$$

Definition. If $A \in Obj(\mathcal{C})$ isomorphisms $\in Hom(A, A)$ are **automorphism**, they form a group denoted by $Aut(A)$

Fact: A *group* is a *groupoid* of 1 object!

4.3 Product and Coproduct

Definition. Let C be a category with $A, B \in Obj(\mathcal{C})$. Z is a **product** of A, B if $\exists f \in$ $Hom(Z, A), g \in Hom(Z, B)$ such that $\forall C \in Obj(\mathcal{C}), \sigma_1 \in Hom(C, A), \sigma_2 \in Hom(C, D), \exists! \phi \in$ *Hom*(*C*, *Z*) such that $f \circ \phi = \sigma_1, g \circ \phi = \sigma_2$

Definition. It is a coproduct is the following diagram commutes:

If product (coproduct) of A, B then it is unique up to isomorphism. If Z, Z' coproduct $\psi : Z \to Y$ $Z^f, \phi : \mathbb{Z} \to Z$ (replace C with Z' from above). Then $\phi \circ \sigma_2 = g, \psi \circ g = \sigma_2$.

Example. For set $A, B, A \times B$ is the product and the coproduct is the disjoint union $A \sqcup B$. By definition, $\{1,2\} \sqcup \{2,3\} = \{1,2,2',3\}.$

Example. For groups G_1 , G_2 , the product is $G_1 \times G_2$ and the coproduct is free product $G_1 * G_2$ (Note that $G_1 \times G_2$ is only coproduct when it is abelian.)

fill in examples from written notes

4.4 Functors

Definition. Suppose C and D are categories and $F : C \to D$ is a **covariant functor** if $\forall A \in$ $Obj(C), F(A) \in Obj(C)$ and a function $Hom_{C}(A, B) \rightarrow Hom_{D}(F(A), F(B))$ such that

- $F(1_A) = 1_{F(A)}$. $A \xrightarrow{\beta} B \xrightarrow{\alpha} Z$
- $F(\alpha\beta) = F(\alpha)F(\beta)$. $F(A) \xrightarrow{F(\beta)} F(B) \xrightarrow{F(\alpha)} F(Z)$