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1 Groups

Definition. G is a non-empty set with a binary associate operation x is a group if
® There is an identity element e,a xe = exa =aVa € G
e Every element has an inverse. Va € G,3a™" € Gsuchthataxa ™' =a 'xa=e
Note: Identity and inverse elements are unique.
Ifn>1,a" =ax*ax*...xafor n times. Similar follows for = ". Also a° = e.
Definition. G is called abelian if ab = baVa,b € G.

Example. Non Abelian Group: GL(n,R) of n x n matrices with real entries with matrix
multiplication.

A non-empty subset H C G is a subgroup if it is itself a group with the induced operation.
s ccH
*acH = a'leH
e g, be H = abe H

Fact: A non-empty subset H is a subgroup iff a,b € H = ab™! € H.

Notation: H < G.

If X C G is a subset, the subgroup generated by X, < X >:= (5 xcy H

fX=a<a>={a"|neZ}

1.1 Cosets

Definition. Let H < G, g € G. The right coset of H in G generated by gis: Hg = {hg ‘ h €
H}. Left cosets are defined similarly, where gH = {gh | h € H}.

Facts: Hgy = Hgs < H = Hgggf1 = gggfl € H. Similarly, g1H = ¢2G <=
gflggH:H <= gflggeH.

Corollary. If Hgl 75 Hgg, then Hgl N Hgg = @

Proof. Leta = Hgy N Hgo = a = h1g2 = hags. Then h;lhl = gzgl_1 = gggfl ceH —
Hgy = Hgo. [ |
Similarly, if g1 H # g2H, then g1 H N goH = 0

Example. A right coset is not necessarily a left coset. One example would be S,, the group of
permutation of 1, ..., n.

Definition. An operation f is injective, or one-to-one on a set S if Vsy,s2 € S, f(s1) =
f(Sg) = S1 = S9.

Definition. An operation f is surjective, or onto on for f : X — Y if im(f) = Y. In other
words, Vy € Y, 3z € X such that f(z) = v.

If X is a setand Sx is the set of bijections f : X — X, then there is a group under composition
of function, namely the group of permutations of X.



Fact: There is a bijection between the set of distinct left cosets of H and distinct right cosets of
H:aH < Ha™'.

Proof. aH =bH < a 'beH < (a™'b)"'€H < b laceH < Ha'=Hb' N

Definition. The indexif H in G, [G : H] is the number of distinct right (left) cosets of H in G.
If |G| < oo, then |G| = [G : H] - |H|. (|Hg| = |H|). In particular, |H| | |G|
IfK<H<Gandif [G: H|,[H: K] <oo,then[G: K] <ocoand [G: K| = [H : K|[G: H].

Exercise: Prove this. a;H,i € I,b;K,b; € H,j € J = a;b;K give all the cosets of K in G.
Hint: (Was in homework last semester)

Definition. For g € G, g has finite order if I3n > 1 such that ¢" = ¢, and ord(g) is the smallest
such n. So ord(g) means that < g > is a subgroup of order n. And if |G| < oo, then ord(g) | |G|.

Definition. G is cyclicif 3g € G such that G =< g >.

If |G| = p, p prime, then G is cyclic: If G # {e}, thene # ¢g € G, then < g >< G, so
1#|<g>||p = |<g>|=p

If G is cyclic, then every subgroup H of G is cyclic

Proof. H < G, and let r be the minimum positive integer such that g" € H, then H =< ¢" >,
so for ¢"™ € H,m = rq + ro. |

Proposition. If G is a cyclic group of order n, then for any divies d | n, there is a unique
subgroup of order d.
Remark: |A4| = 12 has no subgroup of order 6.

1.2 Normal Subgroups

Definition. Let H < G is normal if Vg € G,gHg~! C H. Note that gHg~! = {ghg~!|h €
H} <G.

Proof. ghg™'(gh'g™")~" € gHg™! |

Example.
¢ Every subgroup of an abelian group is normal

* SL(n,R), real matrices with det=1, is a normal subgroup of GL(n,R), invertible matri-
ces.

Obviously for A € GL(n,R), B € SL(n,R), det(ABA™') = det(A)det(B)det(A™") =1
We denote H normal in G as H < G.
If H < G, then the following are equivalent.

1. HIG

2. gHg ' =HVgeG



3. gH=HgVgeG
4. Every right coset of H is a left coset
5. Every left coset of H is a right coset

Proof of 4 implies 3: Suppose Hg = aH for some a. But then g € Hg = aH, and g € gH. So
aH=9gH — Hg=gH.

Proof of 1 implies 2: gHg™' C HVg € G,s0 (¢7'H(¢g7'))"' CH = ¢ 'Hg C H. Multiply
from left and right to cancel, so H =C gHg~'.SogHg ' = H

Corollary. Any subgroup of index 2 in any group G is normal.

Proof. |G : H] = 2 = two distinct left cosets, H, aH where a ¢ H. Similarly, H and Ha are
distinct right cosets. This H NaH = 0, H N Ha = (, so by 4, H is normal. [ ]

1.3 Quotient (Factor) Groups

If N < G, then the set of cosets of N in G, G/N, form a group under (aN)(bN) = abN. We
need to check that

e Well-defined: aN = o/ N and bN = 0'N = abN = d'b/N.

* Group properties easily follow from the group properties of G
Soa~ta’,b~'t € N. (add from notes)
Notation: This group is denoted as G/N.

Example. SL(n,R) < GL(n,R). Then GL(n,R)/SL(n,R) +— R — {0}, and A - SL(n,R) —
det(A)

1.4 Group Homomorphisms

Definition. Let G, G’ be a group. ¢ : G — G’ is a homomorphism if ¢(ab) = ¢(a)p(b) for all
a,b € G. fis an isomorphism if the homomorphism is injective and surjective.

Facts: If ¢ : G — G’ is a homomorphism, then
* ¢leg) = ew
e ¢(a™t) = (¢(a))”!
* ker(¢) :={a € Gl¢(a) = eqr} G
* im(¢) :={¢(a)la € G} < &

Proof. From video |

Example. Let Z, be the group of integers mod n. Then any cylic group of order n is
isomorphic to Z,. In particular for G =< g >, we define ¢ : G — Z,,, ¢(¢") = [i].



1.5 Isomorphism Theorems

1st IsomorphismTheorem. If f : G — G’ is a group homomorphism, then
G/ ker(f) = im(f)

Proof. Define ¢ : G/ ker(f) — im(f) by ¢p(aker(f)) = f(a).
¢ is well-defined and injective: aker(f) = bker(f) < a~'b € ker(f) < f(a"'b) =e.So
fla™)f(b) =e = [f(b) = f(a).

¢ homomorphism: .¢(a ker(f)bker(f)) = ¢(abker(f)) since kernel is normal group and that is
f(ab). On the other side, ¢(aker(f))p(bker(f)) = f(a)f(b), so this is homomorphism since f
is homomorphism

¢ surjective: If b € im(f), then b = f(a) for some a. So ¢(aker(f)) =b. [ |
Example. SL(n,R) < GL(n,R). Then GL(n,R)/SL(n,R) ~ (R —{0},-)

Proof. f: GL(n,R) — R — {0}, A — det(A). This is a group homomorphism, f is surjective,
ker(f) = SL(n,R) = GL(n,R)/SL(n,R) ~R — {0} [ |

Remark: It H K < G,HK = {hk|h € H,k € K}. HK is not necessarily a subgroup of G. For
example, consider G = Ss.

Fact:If N <Gand H < G,then HN < G, HN = NH,and HN is the subgroup of G generated
by HUN.

Proof. HN < G :If a = hiny,b = hgng, then ab™' = hyniny 'hy' = hihy thoning thyt.
Clearly, nyny ' € N so haniny 'hy ' € N. Thus, ab™' € HN.

HN = NH: We need to first show HN C NH. Lethn € HN — hnh ! =n' e N =
hn=n'h € NH,so HN C N H. Similar for other direction.

Clearly, HLN € HN < G. And for any K < G, let H,N C K. Since K is a subgroup,
Vn € N,h € H hn € K. Thus HN < K is the smallest subgroup. In particular, HN is the
subgroup generated by H U N.

|
2nd Isomorphism Theorem. Let H < G,N I G. Then H NN < H and
H/HNN ~ HN/N
Proof. If ¢ : H — HN/N is given by ¢(h) = hN.
ker(¢p) ={h € HIhN =N} =HNN.
¢ is surjective (so the im(¢) =range): hnN = hN = ¢(h).
¢ is homomorphism.

Together by the first isomorphism theorem, the result follows. n



3rd Isomorphism Theorem. Suppose K < N < G and K < G. Then
N/K 4G/K and (G/K)/(N/K)~G/N

Proof. First part follows by definition.

Second part: Define ¢ : G/K — G/N, ¢(9K) = gN and check well-defined, homomorphism,
ker(¢) = N/K, and ¢ surjective.

Well defined: gK = ¢K = g lge K = g '¢ € N = gN = ¢'N. Surjectivity is clear,
the rest is left as exercise. |
4th Isomorphism Theorem. (Correspondence Theorem)

Let N A G, then ¢ : G — G/N, ¢(g) = gN induces a 1-1 correspondence between subgroups
of G which contain N and subgroups of G/N.

e N<H; <Hy, < Hl/NgHg/N,and [HQ:Hl]: [Hg/NHl/N}
e N<H  <Hy — Hl/NﬁHQ/N,andinthiscase, Hg/Hl ~ (HQ/N)/(Hl/N)

1.6 Simple and Solvable Groups
Definition. A group G is called simple if it has no normal subgroup other than {e} and G.
Example. If G is finite and abelian, then G is simple iff G is cyclic of prime order. (proof later).

Example. Consider 4, the alternating group of n elements. Fora o € S, ¢ is a product of
transpositions, or cycles of length 2. We call o odd or even if the number of transpositions is
odd or even. A4,, < 5,

Note that this is well-defined: Proved using determinant of matrices. o matrix generated from
identity matrix using series of corresponding row swaps, which just alternates the sign of
determinants. Thus even/odd is defined by the number of swaps. In particlar, A,, defines the
set of all even permutations.

Also, A, «— By, 0~ 0(12). [S,: Ap] =2 = A, <S5,

Conclusion: A,,,n > 5 is simple. Forn =2, Ay = {e}. Forn =3, A3 = {¢,(123),(132)}.
Forn = 4, |A4| = 12.0’1 = (1 2)(3 4)70'2 = (1 3)(2 4),0’3 = (1 4)(2 3) Here, {6,0’1,0’2,0’3} S A4
Theorem. A, issimpleifn >5

Proof. (1) A,,,n > 5is generated by 3 cycles, and (2) Every 2 3-cycles are conjugate in A,: o1, 02

are 3-cycles, then 37 € A,, : 7017t = 09.,and (3) every normal subgroup N # {e} in A,, has
at least one 3-cycle. Together they prove the statement.

For (1), T ={(abc) | 1<a<b<c<n}C Ay, then(T) C A,. If

e, if {a,b} = {c,d}
o= (ab)(cd) =< (acb)(acd), ifa,b,c,dalldistinct
(adb) ifa=c
For (2), if 01, 09 are 3 cycles, are conjugate in S, [ |



Theorem. Jordan-Holder Theorem. If G is any finite group, then there is a unique tower of
subgroups
{e}=NoQ N, <--- <IN, AN, =G

such that N;/N;_; is simple.

Definition. A tower of subgroups, G, < G,,_1 < --- < G; < Gy = G is normal if
Giy1 < G4, and it is abelian if G; /G, is abelian, and solvable if there is an abelian tower
{e} =G, <Gpro1 < <G <Go=0G.

Example.
¢ Any abelian group is solvable.
e Sjissolvable, {e} < {e,o1,0}} < S5

e S,,n > 5isnotsolvable

Proof. If N < S, then NN A,, < A,,. But A, simple, so NN A, = {e} or A,.

IfNNA, = A, thenA4d, < N<S, = N=A,0or N =5,dueto[S, : A,] = 2. If
NNA, ={e}and N # {e}, thenif 01,02 # €,01,02 € N, then 102 € N since they are even,
SO 0109 = €.

But by parts 1 and 2 of previous theorem, N = A,,. Since N = {e}, N,or S, = S,,n > 5is
not solvable. |
Definition. Let z,y € G. The commutator of z,y := xyz~'y~! = [z,y] Note that [z,y] =
e < xy=yz,and [z,y]"! = [y, z]. This gives us a notion of how far a group is from abelian.

Definition. G’, the commutator subgroup, is the subgroup generated by all the commutators
[z,y], where z,y € G. G’ = {[z1, y1][x2, y2] - - [Tk, vk | 24, y: € G}

Facts:
e G'={e} < G isableian
e <G
e G/G' is abelian

Proof. Insert gg~! between the elements: g[zylg~!

G

=gxg'gygtgr g gy g = [grgT  gygT ] €
Similarly, glz1, y1] - - [2r, yklg ™" = (glz1,01]97") -~ (gleryrlg™)

G /G’ abelian proof: Want abG’ = baG’. a=1b~tab = [a~1,b7!] € G’. So it is true. [ |
Proposition. If N < G, then G/N is abelian <— G' < N

Proof. = :Va,b € G,G/N abelianso a ™ 1b'N =b"la"!N. Thenaba b1 € N = [a,b] €
N = G'<N

—:a b lab=[a" 071 €EG CN = a b labe N [ ]



Example. (S,)" = A,. Proof left as exercise
Let G .= G,GM =G, ...,GW = (GU-V). Gi+D) 4 GW and GO+ /GO is abelian.

Proposition. G is solvable iff G(™) = {¢} for some m > 1

Proof. «=: {e} = G ... < GW < @G is an abelian tower.

= :If{e} =G, <--- 4Gy < Gy = G is abelian, then G; 4 Gy, Gy/Gy abelian — G’ <
G1,G2 < G1,G1/G abelian = (G;1)’ < G2 implies together that G@ < G, <Gy =
G®? < Gs.

By induction, G < @;vi,G'"™ < G, = {e}.

Proposition. If N < G, then N, G/N are solvable <= G is solvable.

proof: exercise, use derivative as one, use tower definition.

1.7 Group Actions

Definition. For a group G acting on set X, an action of G on X is a functiona : G x X —
X, (g,2) — g -z such that

e c.x=ux,VreX.
* (q192) v =g1-(92-2), Vo, 12 € X, g€ G
Note that Vg € X, ¢, : X — X is a permutation, z — g - =.

Li(g-2) = e-x=c-2.

b, is bijective, where gz = g- 2/ = g7 '-(g-2) =g~
Also Vz € X,gb;l(g x)=g-(g7t-2)=2
So, ¢ : G — Sx, the group of permutations of X with composition of functions and g — ¢,.

Thus ¢ is a homomorphism (not necessarily injective), since (g1 92)(x) = (9192)x = g1(g2z) =
V(1) 0 ¥(g2)().

Example.
1. Trivial action. Vg € G,z € X,g -z =«
2. Conjugation on elements of G. X = G, g -z = grg™*

3. Conjugation on subgroups of G. Let X be set of subgroups of G, g € G,H € X. Then
g-H=gHg'<G,anda,b€ gHg . Thena = ghg~',b=gh'g~' = ab= g(hh')g .

4. G acts on G by translation. X = G, g -z = gx.
Definition. Suppose G acts on X, 2 € X. Then the stabilizer is defined as

G, ={9eCGlgz=2} <G
Definition. We also define an orbit of X that forms a partition in .
O, ={gz|geGIC X

Note: z ~ yif y € O, so y = gz for some g. Thus, any two orbits are either equal or disjoint.



From the examples above, the stabilizer and orbit is
1. G, =G,0, = {z}
2. G,={g€@qG | gr =29}, Op = {grg™?! | g € G}, the conjugacy class of z in G.
3. Op =all subgroups conjugateto H, Gy ={g € G |gHg ' =H} < H

normalizer
4. G, ={9€G|gz=a}={e},0, ={gz|geG} =G

Definition. As mentioned above, the normalizer of H in G is the largest subgroup of G in
which H is normal.
H<Ng(H)={geG|gH =Hg} <G

Definition. An action is transitive if there is only one orbit, O, = X

Theorem. [Orbit Stabilizer Theorem]. Let X be a G-set, then Vzx € X,
|0:] =[G : G,

Proof. Define v : O, — set of left cosets of G, gz — gG,.

Well-defined (since we can’t make sure gz = g’ = z=2): gz =¢'z <= 2z =g ¢z =
g7l € G = ¢G, =J¢G,.

Surjective: clear [ ]
Definition. For group G, the center of G, Z(G), is defined as
Z(G)={g€G|gg = g'g¥g € G}

Fact:
e Z(G) =G < @ abelian
e 7(G) LG

IA

Proof. Exericse. (Check video 9/13) |
Example. Z(S,) = {e},n >3
Example. If G acts on its subgroups in conjugation, H < G,

On| =[G :Na(H)] Ng(H)={geG|gHg ' =H}

Theorem. Burnside’s Lemma. If G, X finite, X is a G-set, then the number of orbits of the
action is ﬁ >_gec | Fyl- where Fy is the set of elements of X fixed by g.

Proof. Consider S = {(g,) | gz = 2} C G x X. We can count S in two different ways.
1. Vg € G, there are | Fy| elements fixed by g so [S| = 3_ 5 |Fyl-
2. Vz € X, there are |G| elements of X fixed in z, which equals |G|/[O,].

G o
S0 > e 1Fol =Y pex ||07J\ = |Gl X gistinct orbits O, Io—lw‘|01| = |G| x num orbits in X [ ]

10



Corollary. If G acts transitively on X, and |X| > 1, then there is g € G such that F, = (. In
other words, Vx,y € X, 3¢ such that gz = y. Equivalently, X has 1 orbit.

Proof. Burnside’s Lemma gives |G| =3 o |[Fol = Fe +3_, . [Fyl-
If [Fy| > 1Vg, then |G| = | X[ + 3 . [Fy| > [X|+ (|G| = 1) = [X]| <1, acontradiction. W

1.7.1 Class Formula

Class Formula is when G acts on G via conjugation. If z € G = X,

sz{geG‘gx:xg}SG, Omz{ga:g_1|g€G}

N (=)

O-t gives a partition of G. So ‘G‘ = Zdistinct orbits |O$| = Zdistinct orbits [G : Gﬂc = N(‘T)]

|0z| =1 <= z € Z(G). So we can write that summing all distinct conjugacy class with more
than 1 elements.
Gl = 2(G) + 3[G : Gu]

Corollary. If |G| = p", p prime, then Z(G) # {e}.
Proof. Since |G| = |Z(G)| = Y |G : G4, soif Z(G) = {e}, we getp” = 1+ Z%. where

|G|/|Gz| > 1 and is a divisor of |G| = p”. This implies that p | 1, a contradiction = Z(G) #
1 [ ]

Corollary. If |G| = p?, then G is ableian.

Proof. If G is not abelian, then | Z(G)| = p, so Z(G) is proper subgroup of G. Picka € G—-Z(G),
then N(a) = {b|ab = ba} # G. However Z(G) is proper subgroup of N(a) and N(a) proper
subgroup of G, a contradiction (a in N(a) but not in Z(Q)). |

Corollary. If |G| = p", then G is solvable.

Proof. Proof by induction on r, r = 1 true.

Suppose this holds for 1,...,r — 1. Consider Z(G) < G and Z(G) # {e}. Here |Z(G)| and
|G/Z(G)| are powers of p. So by hypothesis, Z(G) and |G/Z(G)| solvable = G also solvable.
|

1.8 Sylow Theorems
Theorem. Suppose |G| = p"m, ged(p, m) = 1. Then V0 < s < r, G has a subgroup of size p®.
Proof idea: abelian case and non abelian case.

Lemma: If G is abelian and p | |G|, then G has a subgroup of order p.

Proof. Induction on order of G. If |G| = p, there is nothing to prove. Suppose |G| > p, Let
e #a € G,t=ord(a). Then H = {e,qa,...,a’ '} < G, and there are two cases:

11



1. pr|t,so\<a%>|=p

2. Otherwise, let n = |G|,n = tn' so p|n’ = |G/H| < n . So, by induction hypothesis,
G/H has subgroup of order p, so an order of order p. Let there be a surjective map
¢ : G — G/H, so if ¢(b) = b, then p|ord(b). So we can apply case 1 to b and get a
subgroup of order p.

Remark: If ¢ : G — G’ is a group homomorphism and g € G and ord(¢(g)) ‘ ord(g), so
——

m

g"=e— ¢p(g)™ =e. (a* =e = ord(a) | k) [ |
Proof of theorem. Recall that class formula states that when G acts on G by conjugation, |G| =
|Z(G)| + ]G : G, summing over distinct orbits with more than 1 element.

Fix p induction on G. If |G| = p, we are done. Now, let’s have two cases where (1) p | |Z(G)|
and (2) p doesn’t divide | Z(G)].

In case 1, by lemma, Z(G) has subgroup H of order p. Since H < Z(G) and Z(G) < G,
we get H < G so G/H is a group of size p"~!'m. So by induction hypothesis G/H has a
subgroup of order s for all 0 < s < r — 1. Any subgroup of G/H is K/H for H < K < G. So
|H|=p,|K/H| =p* = |K|=p*'.Sothisholdsfor1 <s+1<r.

In case 2, GG is not abelian, and we make two subcases.

1. Suppose Vo ¢ Z(G),p|[G : G]. This case is not possible since p | |G| and p doesn’t
divide Z(G)

2.3z € Z(G),p 1 [G : G| = |G|/|G|] = pTHGx\, and |G;| < |G|. By induction
hypothesis, G, and therefore G has a subgroup of p*,0 < s < r.

Note: H I K 4G =5 H <G.LookatG = Ay.

Definition. A group G is a p-group if |G| = p". So Ve # a € G,p|ord(a). And if |G| =
p"m, gcd(m,p) =1, H < G, then H is a p-subgroup if | H| = p®, and H is a p-sylow subgroup
if | H =p".

Theorem. If p| |G|, then
1. Every p subgroup is contained in a p—sylow subgroup.
2. Any two p—sylow subgroups are conjugate.
3. If 7 = number of p-sylow subgroups, thenr | |G| and 7 =1 mod p

Proposition. If H is a p-subgroup and P is a sylow p-subgroup, then H is contained in a
conjugate of P: 3g € G, H < gP~ g

Implication: The proposition shows the first and second part of them.
Part 1. |gPg~'| = |P|, so the conjugate is also a sylow P-sylow |

Part 2. P, P’ sylow, then Jg such that P’ C gPg~'. Then |gPg~!| = |P| =p" and |P'| =r =
P'=gPgL.

12



Proposition Proof. Let S be the set of conjugates of P and H acts on S by conjugation, so that & -
ng_l = thg_lh_l . Then § = Edistinct orbits |OS| =number of fixed POintS + Zdistinct w/ size>1 |OS I

Now the goal is to show that there 3 a fixed point. Since |O5| = [H : H;] and |H| = p®, then
p |10

Here, |S| = [G : Ng(P)] = |S] =
p1|S|and so p” } |Nc(P)|-

Let gPg~! be a fixed point. Then Vh € H,hgPg~'h™! = gPg~™' = P = g~ 'h='gPg 'hg
= P=g'hlgP(g7thtg)"! = g 'h lge Ng(P).SoVhe H = g 'Hg C Ng(P).

Let K = g"'Hg, K, P < Ng(P) and P < Ng(P).

‘NG(P . Since P < Ng(P) < G and p" | [Ng(P)|, I get

So by the second isomorphism theorem, K P/P ~ K/KNP — |KP| = I'jj‘g’;" and |KP|||G|,

and |P||K]| is a power of p —> \I‘fié‘l:’\ =1 = KCP = g¢g'HgCP = HC

gPg~1. |

Part 3 Proof. By part 2, 7 = number of all conjugates of P = [G : N¢(P)], and [G : Ne(P)] | |G|.

To show r =1 mod p, let H = P from proof of the proposition, so that » = number of fixed
points + a multiple of p

If gPg~"! is a fixed point, then by the proof P C gPg~!, but |P| = [gPg~'|so P = gPg~'. So
only one fixed point = r = 1(mod p) |
Note:r =1 <= gPg ' =PVge G < PG

Corollary. If |G| = pg where p, ¢ are distinct primesand p # 1 mod gand ¢ #1 mod p. Then
G is cyclic.

Proof. Letri be the number of sylow p-subgroups and 7, be the number of sylow g-subgroups.
Then 7 ’pq,rl =1 modp = r; =1, and similarly r, =1

If H,, Hy, < G with |Hy| = p and |H;| = ¢, then by the note, Hy, H, < G.

Hy ={e,a,...,aP7'} =< a > Hy = {e,b,...,b9" 1} =< b >. Foraba™! € Hy and ba=1b~! € Hy,
aba=1b~! € Hy N Hy = {e} = ab=ba = ord(ab) € {1,p,q,pq}. So (ab)? = aPbP = bP +#
e = ord(ab) =pg = G =<ab> |

Fact: Group of order < 60 is solvable, since N I G, N, G/N solvable = G solvable.
Example. If |G| < 30, and G is not of prime order, then G is not simple.

Corollary. If |G| < 30, then G is solvable.

Proposition. If |G| = n and p is the smallest prime divisor of n and H < G has index p, then
HJG

Proof. If p = 2, this is proved before.

Suppose H 4 G. Then there is g € G such that gHg™' # H. Let K = gHg ™'

Since |[HK| = |H| |h|TIr%<\ where |H N K| which divides | K| and so |G|. Then either |h|rlr%<
K]
THAK] = P

‘—1

or

13



For the firstcase, HNK = K = K CH = gHg ' C H = gHg~! = H,not true.

For second case, |[HK| > p|H| = |G| = HK =G = g ' € HK = HgHg~'. So for some
h,h' € Hohgh' =e = g=h"'W"'€¢ H = ¢gHg ' = H,acontradiction.So H<H ®H
Corollary. If |G| = pg", and p, ¢ are distinct prime and p < g. Then G has a normal subgroup.

Proof. By Sylow Theorem, there is a sylow g-subgroup H, so [G : H| = p. H is normal from
the previous corollary. [ ]
Corollary. If |G| = pg,p # ¢, then G has a non-trivial normal subgroup.

Proposition. If |G| = pg¢?, and p, q are distinct prime, then G is not simple.

Proof. If p < q, we are done by previous corollary.
So if p > g, let r be the number of sylow p-subgroups and s be number of sylow ¢ subgroups.
Goal is to show that r = 1 or s = 1 since the only sylow subgroup is normal.

Sincer =1 mod p,r | |G| = p¢> = r|¢® Soeitherr = 1,r = q,;r = ¢%. If r = 1, we are
done. r = ¢ is impossible since ¢ =1 mod p and p ] g — 1butp > g. So assume r = ¢°.

So because s =1 mod q,s’|G| :qu,thens‘p = s=1ors=gq.If s =1, wearedone. So
assume s = p.

Then we have ¢? subgroups of order p and p subgroups of order ¢°. Then |G| > 1+¢*(p—1) +
q? — 1, so there is only 1 g-sylow subgroup. So s = 1, and we are done. ]
Corollary. Every group of size < n which is not of prime is not simple.

[Check Video]

Fact: If |G| = 24, then G is not simple.

Proof. Let r be the number of sylow 2-subgroups and s be the number of sylow 3-subgroups.

r=1 mod 2 r = 1, so we have normal subgroup
{r |3 - {r =3
So assume r = 3, and we have sylow 2-subgroups H1, Ho, Hs, |H;| = 8. Let S = {H1, Hy, H3}
and G acts on S by conjugation.
So there is a homomorphism ¢ : G — S3, the group of permuations of S.
Use the fact that ker ¢ < G and we calim that ker ¢ # {e} or G.

® kero # {e} : |G| =24, |S3] =6 = ¢ notinjective = ker ¢ # {e}

® ker¢ # G : Hy, Hy are conjugate by Sylow Theorem, so 3g € G such that gH;g~! =

Hy, = g-Hl#Hl — (b(g);«ée

s=1 mod3 . Js= 1, so we have normal subgroup
s | 8 s=4

So assume s = 4 [

14



Fact: Any group of order < 60 is solvable. Hint: 36 similar to 24, and 40 and 56 use counting of
elements (union larger than elements?)

1.9 Dihedral Group
Here, |D,| = 2n,D,, = {e,z,..,a" Y y,yx,...,yz" " '}.
When n = 3,D3 = 53

Fact: D,, is solvable (Homework exercise).

1.10 Direct Product of Groups

Let G1, Gy be groups. Then G; x G2 = {(g1, 92) }gl € G1,92 € Ga}, and (g1, 92)(97,95) =
(9141, g295)- The identity element is (e, e2) and (g1, 92) " = (97 ', 95 *)-

Let I be an index set G;, ¢ € I. Then
116G = {(@er | =i € Gi}
iel
are the direct product of G;, where (2;);cr(y:)icr = (Ti¥:)icr-
Then, the direct sum of abelian groups where A; abelian, Vi € I.
GB A; < H A;, @ A; = {(a;)ier | there are only finitely many non-zero a; }
i€l i€l i€l
Notice that if I is finite, then @, ; A; = [[;c; Ai-
Definition. Let A be an ableian group. Then
® o € Ais torsion if ord(a) is finite: In > 0,na =0
o Ao is the set of torsion elements in A, A¢,. < Asincena =0,mb=0 = nm(a+b) =0
¢ A is torsion-free if A;,. = {0}.
e Ais torsionif A;,. = A
Example. Z is torsion-free. Z/m is torsion, and any finite abelian group is torsion.

Theorem. If A is a torsion abelian group, then A ~ @ A(p), where A(p) are elements a

in A such that ord(a) is a power of p, p"a = 03r > 1.

p; prime

Proof. Plan: We have A ~ A, @ A/Asor, where A/A;,, is torsion-free. Both parts are finitely
generated. Then we show that A,,, is finite. Then since A/A;,, is finitely generated, and
torsion free, A/A;or ~ Z & --- & Z. Then, show that A, finite is a direct sum of abelian
p-groups, thus a direct sum of cyclic group.

Let ¢ : ©p prime A(p) — A is homomorphism, (x,) — >z, € A.

¢ surjective: a € A,ord(a) = m = pi'---pl», p; distinct prime. Then proceed by induc-
tiononn. If n = 1, then ord(a) = pi* = a € Alp) = a € im(¢). Then for n,
ord(a) = pj*---pin <= ap}*---pi» = 0. So since pt---p,"7' and p» coprime, Is,t €
Zsuch that spt - -p," ' +tpim = 1, asp ---p." 7" + atp’* = a. Since the two numbers are in
img, their sum is in im(¢).
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¢ injective: Suppose ¢((z9)) = 0, and 3¢, 24 # 0, then )z, =0 = 24 = — Zg};éq T, =
Ty = —Tp, —..——Tp, . Ord(xy,) = pi* = pi* - pir(—xp, —...—Tp,) =0 <= q(p* - -pr) =
0 = ord(q) | p;* - - pr, a contradiction. [ ]
Example. A = Q/Z, where A(p) = {4 +Z | % € Z} for some r.Then HT“ =c = 3=

so={5+Z|ceZr>0}

Lemma: Every finitely generated torsion abelian group is finite.

Proof. 1f ord(a;) = m;, and A = (a1, ...,ax) = {nia1 + ... + ngay |n; € Z} = {nyay + ... +
ngay | n1 € Z,0 < n; < m;}, which is finite. [ |
Theorem. Every finite abelian p-group is a direct sum of cyclic groups.

Lemma: If A is a finite abelian p-group which is not cyclic, then A has at least 2 subgroups of
order p.

Lemma Proof. See homework [ |

Theorem Proof. Let a € A be an element of maximal order. We prove by induction on |A| that
there is a B < A such that A =< a > ®B. This means that if By, By < A such that B N By =

{0}.
If |A| = p, we are done.

Let ord(a) = p°. Then < a > has a unique subgroup of order p. Let < b > be another subgroup
of order p in A such that (a) N (b) = {0}, which exists due to the previous lemma.

Consider A = A/ < b >, |A| = % < |A|. Then there is @ = a+ < b >, an element of maximal
order in A.

By the induction hypothesis, there is a B such that A =< @ > ®B.
SoB<A=A/<a>= B=B/<a>for B< Awith<a >C By. Then A =<a > ®B
]

Definition. A group A is free if A has a basis {a;};c; such thatVa € A,a = >
unique way. So if A has a basis with n elements, A~Z @ --- ® Z.
—_———

ser Niaq in a

n elements

Proposition. Free abelian groups are torsion-free

Proof. A =< a; >. Suppose b # 0 € Asuchthatmb=10,b=) a; = mb= > (m\)a; =
m\ = 0Vi — b =0, a contradiction. [ |

Example. Torsion-free abelian groups are not necessarily free. Consider QQ as an example.

Proposition. Every finitely-generated torsion-free abelian group is free, A~Z @ - -- ® Z.
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Proof. Let A =< aq,...,a, > and inducton n. If n = 1, A =< a3 > is torsion-free = |A4| =
oo = A~Z.

n—1=> n:LetB:={a € A|ma€<a >3Im>0}.

Claim: B is cyclic, B < A = B finitely generated.

Let B =< by,...,b; > Vidm;, m;b; €< a; > .Letm =mq---m;. Thenmb €< a; > Vb € B.
Now look at ¢ : B =< a >,b — mb. Then im(¢) << ay >.

So im(¢) is cyclic: im¢ =< Aa; >, A > 1. Let by € B such that ¢(b1) = Aa,.

Then B =< by >. If b € B,mb € im¢ = mb = t\ = tmb; for somet = m(b—tb;) = 0.
Since A torsion free, this means b = thy =— b €< by >.

A/ B is generated by as + B, ..., a,, + b and is torsion-free, where if m(a + B) = 0,ma € B =
A\ : dma €< a; > =— a € B.

By the induction hypothesis, A/B is free = by proposition last time, A= B & C ~Z O Z D
-+ @ Z., so this is free. [ |
Proposition. Every subgroup of a finitely generated abelian group is finitely generated.

Idea: This implies that A;,, is finitely generated. Combining with previous result that a finitely
generated and torsion group is finite, I can then write A, = Zp? DD Lyrm.

Proof. Let H < A, A = (a1, ..., a,), and proceed by induction on n. If n = 1, this is cyclic so
clearly true.

n—1 = n:Let B = (a1, ...,an—1) < A. Then by induction hypothesis, HN B = (hq, ..., hp_1)
generated by at most n — 1 elements.

Also, A/B =< a, + B >.

l<\Tote t(hat H g; ~ A= Since ££8 < £ it is also cyclic, so 725 cyclic, generated by some
hn+(HNB)),h, € H.

So H =< hu, .., hy, >, Ineed to show that they actually generate H. If h € H, then h+(HNB) =
Ahn+(HNB) = h—Mh, € (HNB) = h—M\,h, = Z:.le ANihi = h=>"" \h;. N

Proposition. If A is abelian and B C A such that A/B is a free abelian group, then there is a
subgroup C' < Asuchthat A=B® C.

Proof. Let {a; + B};cs be abasis for A/B. Let C =< a; >< A. We claim that A= B C.

First show BNC' = {0} : Suppose ) ., A\ja; € B,then)_,; \ia;+B = B,so ), .; \i(a;+B) =

B, where B is the 0 of A/B. So, \; = 0Vi.

Toshow A= B+C :Ifa € A,thena+B =}, ; A\i(a+B)in A/B,soa+B =}, ;(\ia;) + B,

soa—ZAiaieB. |
iel

——
eC
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Summary: Since A is finitely generated, A/A;,, is torsion-free, and A finitely generated —
A/Aor is finitely generated. So, by previous proposition, A/A,,, is free.

Then by the other proposition, 3C' < 4, A = Ay, @ C. So C is finitely generated, and can be
writtenas Z @ --- @ Z

Definition. Let F' be a group (not necessarily abelian) and X C F. Then F'is a free group
with basis X if it satisfies the following universal property:

e VV group G and every function f : X — G, there is a unigue homomorphism ¢ : F' — G
extending f.

For a set X, the free group generated by X = {a;---ax |a; € {e} UX U X}
Example. If X = {z}, the free group generated by X = {z" |r € Z} ~ Z
Example. X = {z,y}, then F = {a"y" ... aFnym |, ky, € Z,n > 0}.

Fact: Every group is a quotient of a free group. G =< z; >,i € I.

Let F be free group generated by {z;};c;. By the universal property, 3 homomorphism ¢ :
F — G, ¢ surjective. Let N = ker(¢), N < F. Then F/N ~ G.

If N=<y;>jecJ Then<u;icl|y;=e,j€c J>isa presentationof G.
Example. G = Zg, Z ={0,1,2,3,4,5}. Let ¢ : Z — Zs, 1 =~ 1. N =< 6 >C Z. Zg =< x| 2® =
e >
Example. S3 = {¢,(12),(13),(23),(123),(132)} Then S5 =< z1,22 >. So a presentation of
e e N —
T3

1 maw1 play Z2

S3 =< x1,Ts | 1:% = e,xg =e,Tox) = zlxg >

Proposition. Let GG be a free group generated by z, y. G is finitely generated, H < G generated
by {yzy~',y?zy~2,y3zy~3,...}. Then H is not finitely generated.

1.11 Automorphisms

Definition. Let G be a group. If ¢ : G — G is an isomorphism, then ¢ is an automorphism of
G. Aut(G) is the group of automorphisms of G under composition of function, Aut(G) < S¢.

Example. What is Aut(G) if G is cylic of order m? Define ¢ : G — G, ¢(x) = 21,0 <1 <m—1.
This is always a homomorphism. In particular, ¢ isomorphism <= 2! has order m in
G = ampy =m ged(m, 1) = 1.

Example. LetZ be the group of units in Z,, under multiplication = {I € Z,, | ged(l,m) = 1}.
Then Aut(G) — Z,, ¢ — 1, ¢(z) = 2! is an isomorphism.

— ¢209¢(x) = ¢1($12) = ghl2

{(;sH L = ¢i(x) =2h

Po > Iy = ¢2(.’B) =gl
1.12 Semi-Direct Product of Groups

Previously for A abelian, H, K < A, HN K = {0}, A= H + K, we denote A = H & K, where
HxK~A, (hk)— h+k.
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More generally, if G is a group, H, K < G such that H N K = {e},G = HK and hk = khVh €
H,k € K,then H x K ~ G, (h,k) — hk.

Proof. (h,k) — hk, (b, k') — W'E', (RN kk') — hB' kK = hER'E.

(hk)>e => hk=e = k=h"! = ke KNH = kh=c. n

In particular if it is not the case that hk = khVh € H,k € K, then G ¢ H x K.

Example. G = S5, H = {e,(123),(132)},K = {e,(12)}. HK = S3,HN K = {e}. But
S3¢HXK2Z3XZ2.

IfK <G,H<LQG,then HK < G.

Example. Let K act on H (normal to G) by conjugation. Then ¢ : K — Aut(H) is k — ¢,
¢ (h) = khk=1Vh.

Definition. Let H and K be two groups and ¢ : K — Aut(H) a homomorphism, k +— ¢y.
Then (H x K) with operation (h, k)(h/, k') = (h¢r(h'), kk') is a group, denoted by H x K, the
semi-direct product of H and K.

Proof of Group Properties. 1dentity: (e,e). (e,e)(h, k) = (epe(h), k) = (h,k). (h,k)(e,e) =
(hvd)k(e)?k) = (hvk)
Inverse of (h, k) = (¢4-1(h "), k7). (h k) (@1 (h71), k71) = (hd(dp-1)(h71),€) = (e;e). W

Fact: If ¢ is the identity homomorphism ¢, = eon H,then H x K ~ H x K.
H x K contains copies H and K as normal subgroup. H — H x K, h+ (h,e).
(R k") (h,e)(h' k1) = (Whh~,e),and H < (H x K)

Proposition. If H, K < G,H <G, HNK ={e},G=HK,thenG ~ Hx K. k — Aut(H),k —
(bk, ¢k(h) = khk—1.

Corollary. S3 ~ Z3 X Z,. Notice that this means that ¢ trivial or Z3 x Zg = Z3 or ¢1(1) = 2
which is S3

Proposition Proof. f : H x K — G, (h,k) — hk. To show f injective, f(h,k) = e = hk =
e — h,k=e. [}

1.13 Classification of Small Groups
By order,
2. Zs
L3
Loy @ Lo, Ly
Ls
Zo @® Zs. Non-abelian: S3
L
Zg, Lo & Ly, Lo & Lo & Zo. Non-abelian Dy, Qg

® N o Gk

19



9. Zo,Z3 ® ZLs
10. Z1g,Zsb ® Zo. Non-abelian: D5
11. Z1q
12. Zs ® 24,23 ® Zo ® Zo. Non-abelian: Dg(= Zo X S3), Ayg, Zs X Ly,
In particular, ¢ : Zs — Aut(Zs), whichis Zs. 0+— 0,1+—1,2+— 0,3 — 1
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2 Rings
Definition. A non-empty set R is a ring if there are operations multiplication(-) and addition
(+) on R such that
* (R,+)is an abelian group.
e a-(b-c)=(a-b)-c
ca-(b+c)=a-b+a-¢,(b+c)-a=b-a+c-a.
e There is an element 1 € Rsuch thata-1=1-a =aVa € R.
Properties:
® Unity isunique. 1 =1-1" =1
*0-a=0,Ya€R:0a=(0+0)a=0a+0a = 0a=0
¢ (—a)b=a(-b) = —(ab).(—a)b+ab=(—a+a)b=00=b = (—a)b= —(ab)

Example. (R,+,-), (M,(R),+,-), (R[z],+,), (R[[z]],+, -), which is the ring of formal power
series. {ag + a1z + azx?® + ... | a; € R}.

Definition. Let R, S berings, f : R — S is a ring homomorphism if
* fla+d) = fla)+ f(b)
* f(ab) = f(a)f (D)
* f(1r) = f(ls)

Example. f:R — M;(R),r — [8 8} satisfies 1 and 2 but not 3.

Definition. S C Ris a subring if (S,+) < (R,+) and 1 € S and S is closed under multiplica-
tion.

Definition. I C Ris a left ideal if

.« (1,4) < (R+)

e Vre R,aecl wehaverae€ I.
A right ideal is similarly defined. In particular, I C R is an ideal if both right and left ideals.
Fact: If f : R — S is a ring homomorphism, then

e ker(f)isanideal of R

e im(f)is a subring of S.
Definition. Let I C R be an ideal

R/I:={r+1I|r€R}

isaringwith (ri +I)(ro+ 1) :=rmro+ L, (ri +I)(ro+ 1) = (r1 +re) + 1
Definition.

¢ Ris commutative if ab = baVa,b € R.

* Risadivision ring if every 0 # a € R has a multiplicative inverse.
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* A commutative division ring is a field.

e Ifa,be R,a,b# 0but ab =0, then a, b are called zero devisors.

* A commutative ring with no zero divisor is an integral domain.
Example.

e Zis an integral domain

® Zyisafield <= nis prime.

2.1 Ideals and Quotient Rings
Let I C Rbe an ideal, then we have R/I = {r + I |r € R}, with (r + I)(s + I) =rs+ I.

Proof of Well-defined Multiplication. Want to check thatr +71 =7+ Tands+1 =5 +1 =
rs+1=r's +1

r—1',s—s € I.On the otherside, rs — r's’ =r(s — s') + (r — r')s’ € I, which is true. |
R/I is a ring, with unity 1 4 R and zero 0 + R. The canonical homomorphism is given by
f:R—=R/I, r—r+1I

where f is clearly surjective and ker(f) = I.

2.1.1 Ring Isomorphism Theorems
First Isomorphism Theorem. If f : R — S is a ring homomorphism, then
R/ker(f) ~im(f)

[Second Isomorphism Theorem.] If S C Ris a subring and I C R is anideal, then SN[ is an
ideal of S and I is an ideal in

S+I={s+i|seSicl}<R

and
S/SNI~S+1/I

Idealin S+ 1. (s+1i)(s' +1i') =ss" +is' +si' +ii/, withis' +si’ +4i’ € I [ ]

[Third Isomorphism Theorem.] If I C J C R, I, Jidealsin R, then J/I = {j +1I ]j € J}isan
ideal of R/T and

R/I

Wi R/J

[Fourth Isomorphism Theorem.] (Correspondance Theorem) Let I C R be an ideal. There is
a 1-1 correspondence between subrings of R/I and subrings of R containing I.

22



2.2 Maximal Ideals and Prime Ideals

Definition. Anideal M C Ris called a maximal ideal if for any I C Rwith M C I C R, then
I = M or I = R. Every proper ideal is contained in a maximal ideal by Zorn’s Lemma.

[Zorn’s Lemmal If S is a partially ordered set in which every totally ordered subset has an upper
bound contains a maximal element. It is Partially ordered if

a<a

a<bandb<a = a=0»b

a<bandb<c¢ = a<c
So it follows that if S" C S is totally ordered, then | J;.g, I is in S and an upper bound in S.
Proposition. [ is maximal ideal <= R/I is a field
Proof. = : Assumer + I # I,sor ¢ I. If R is a commutative ring, X C R, then the ideals
generated by X, (X) = {riz1 + - - - rpzs | k>1,r,€ Rx; € X}

Then let J = (r,I) C R, then clearly I C J C R. Since J ideal and I maximal ideal, I = J or
J=RbutreJ—I,s0oJ=R = 1eJ=(i,J) = 1l=rr+i Thusl—r' el =
(14+1)=(r+I)(r" + I), where (r' + I) is the inverse of (r + I).

<=:If R/Iisafield and I C J C R, then J/I is an ideal of R/I. The only proper ideals of a
field is {0} |
Definition. If I C Ris anideal, wesay I is primeifabc I = aclorbc Ifora,bc R.

Example. R =Z, and let mZ be an ideal, m € Z. mZ is prime iff m is prime

Proof. = :Ifm =ab,and a,b > 1, then ab=m € mZbuta,b ¢ mZ

<::Ifab6mZ,thenm|ab:>m|a0rm‘ [ |

Proposition.
1. Every maximal ideal is prime
2. I C Risprime <= R/I is an integral domain.
3. Pisaprimeideal <= IJ C Pimplies C PorJ C P forideals I/, J C R. In particular,
IJ:= {3 ab; | n>1,a; € I,b; € J}isanidealof Rand IJ C INJ.

Proof (1): 1f M is maximal and ab € M and a ¢ M, then the ideal generated by a, M, (a, M) :

{ra + m,m € M,r € R} is an ideal where M C (a,M) C R. Then (a, M) = R since M
maximal,so1l = ra +m forsomer €e R,me M — b=rab+mb,sobec M. [ |
Proof (2): = :If (a+1)(b+1)=0,thenab+I1=0,s0ab€] = a€lorbel,soa+1=0
or b+ I =0, where 0 is the zero of R/I.

«—:Ifabe I, then (a+I)(b+1)=0,s0a+I=00rb+1=0,soaclorbel. [ ]
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Proof (3): 1If P is prime and IJ C PbutI C Pand J C P, then picka € I\P and b € J\P,
then ab € I.J but ab ¢ P, a contradiction

Conversely, assume I.J C PimpliesI C PorJ C Pforideals I, J C R. LetI = (a) = {ra ] e
R}and J = (b) = {rb|r € R}. Then IJ = (ab) (check this). So IJ C P,soa € I C P or
beJCP,soac Porbe P. |

Example. mZ C Zis prime <= mZ is maximal <= m is prime.

Proof. mZ C nZ <= n|m, so prime implies maximal ideal. Alternatively, consider proposi-
tion 2. -

Example. {0} is a prime ideal <= R is an integral domain. This also follows from proposi-
tion 2.

2.3 Chinese Remainder Theorem

For 0 < my,...,m,, € Z,gcd(m;,m;) = 1, then for any 1, ..., 7, € Z, the system of equation

x=r1( mod my)
has a solution
x=r,( mod m,)
In rings, I reformulate this problem for a commutative ring R, where Iy, ..., I > 2 are

P 74 n
ideals in R such that I; + I; = R for every 4,j,7 # j. Then for any rq,...,r, € R, there is
z € Rsuchthatx —r; € I; V1 < ¢ < n.

Proof. Proceed with inductiononn: If n = 2,11 + I = R = Ja; € I, such thata; +a = 1.
Then let = ria; + a1, then z — 7y = r1(ay — 1) + roa; = —ria1 + reay € I;. Similar for
Xr —To.

2 = n:Forl,.. I, letJ=1---1I,.Claim: I + J = R.

SoforI; +I; = RVi > 2,3a; € I1,b; € I, suchthata; +b; =1 — 1= H?:2(al+bz) =1 +J.
By case 2 of the theorem, Jy; € Rsuchthaty; —1 € 1,y1 —0€J = y1 € Iy---I,. Ina
similar way, V1 < i < n,wefindy; € Rsuchthaty; —1 € landy; =1, --- I, - I,, C I;Vj # .
Notethat INJ C IJ.

Letzx =my1+ ...+ rpyn. Thenz —ry =y + - - ri(y; — 1) + - - - 7pyn. Every y; is in I, so this
entire expression is in ;. [ ]

2.4 Product of Rings

Let R, S be rings, then
RxS={(rs)|re R<seS}

where (11, 81) + (r2, 82) = (11 + r2, 81 + s2). and (r1, s1)(r2, s2) = (1172, 81, $2)
Corollary. If Iy, ..., I, are ideals of R such that I; + I; = R for i # j. Then

R n
I o~ HR/L‘
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Proof. Define ¢ : R — [[;_, R/I; by ¢(r) = (r + I, ...,7 + I,,), and ¢ is a ring homomorphism.
ker(¢) = N, I;.

¢ surjective: V(ry + I1,...,m, + I,) € [[;_, R/I;, by the chinese remainder theorem, 3z €
R such that z + I; = r; + I;, so by the first isomorphism theorem, we get the result. [ |

Example. If R = Z, and prime factorization m = pi'---pl» I, = p;'Z. Then note that
I =pl'Z,1; + I; = Z,and N, I; = mZ. So,

z/mZ~ [ z/pj'z
=1

as rings. Also,
n

Zm ~ [ [ 25

=1

as rings.

2.5 Localization

(&)

Suppose R is an integral domain. Consider the equivalence relation § ~ ¢ <= ad = bc.
Then, we can mod out by equivalence relationship.

{%|a,beR,b7éO}/~

Then we define the ring structure such that for b,d # 0,3 + § = “d;[ibc, 7o = 5. There
are well-defined. The unity is 1, and the zero is . This is a commutative ring, and any

non-zero element £,a,b # 0 has a multiplicative inverse 2. Thus we get a field, namely the
field of fraction of R (Quotient field).

Definition. Suppose R is a commutative ring. Then S C R is a multiplicative subset, where
leSanda,be S = abe S,and0¢ S

Example.
e ForO#reR, S={1,rr%.}
e P C Rbeaprimeidealand S = R\P. Thena,b¢ P = ab ¢ P.

Define S™'R = {(r,s) | r € R,s € S}/ ~. Then consider the equivalence relationship (r, s) ~
(r',s") <= 3s” € Ssuch that s"(rs’ — sr’) = 0.

If 0 € S, then (r,s) ~ (0,0), and everything is 1 equivalence relationship. So from now on, we

. _ ’ ’ ’ ’
assume 0 ¢ S. Then we have ring structure on S~' R, 5= %, and I = I

s s’ ss’

Operations are well-defined: If { = 2, then 3s”, s"(rso — r¢s) = 0. Then I want to check that

T r’ __ 7o r’ Ts'+r's _ ros'Jrr'so _ . .
sty =ty &= Y =S <= ... = 0. Last step consists of annoying
factorization.

There is a natural ring homomorphism defined by ¢ : R — S™'R, ¢(r) = %.

In particular if R is an integral domain (so rs’ = r’s), S™' R is a subring of the field of fractions
of R, which we can write as R C S™'R C K, where K is the field of fractions.
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Note that qb R — S7!R has the property that ¢(s) is invertible. Namely Vs € S, ¢(s) = £

1°
so 2l =1 Andift : R — R’ is aring homomorphism such that ¢(s) invertible in R, then

Af.S- 1R — R’ such that f o ¢ = ¢ [Check video for graph]

R—"Y R

\/

Proposition. Assume R is an integral domain
e If S = R\ {0}, then S™! R is the field of fractions of R.
o If S={1,f,f% .., } where f € Rsuch that f* # 0Vn, Ry = ST'R = {#

a € R,r >0}
e If P C Risaprimeidealand S = R\ P, Rp = S"'R = {% |a,b € R,b ¢ P}

e If P C Risa prime ideal, then R, is a local ring. i.e. it has a unique maximal ideal. This
unique maximal ideal is defined as {% | a,b € R,b ¢ P,a € P}. If b ¢ P, then there is an
inverse which is not possible since P C R.

2.6 Principal Ideal Domains (PIDs)

Definition. For integral domain R, anideal I C R is principal if it is generated by one element
I =(a) = {ra|r € R}. Then R is PID if every ideal is principal.

Example.
¢ Zis PID. Every ideal generated by some n.

® R[z]is a PID. If I # {0} is an ideal and 0 # f(z) € I has the smallest degree, then
I = (f(z)). If g € I, dividing g by f means that g(z) = ¢(z)f(z) + 7(z). So r(z) or
deg(z“}>< deg(f). By r(x) = g(x) — q(x)f(z) € I, by degr(z) > degf(z) = r=0 =
g€ (f).

* R[z,y]isnota PID. (z,y) = {f(z,y) | £(0,0) = 0} not principal.
* Z[z]isnota PID. (z,y) = {f(z) | f(0) is even} not principal.
Definition.

* For an integral domain R, a € R is prime if (a) is a prime ideal. Equivalently, a | bc =
alboralc.

¢ 0 # a € Risirreducible if it is not a unit and if « = zy, then z is a unit or y is a unit.

Proposition. A prime element is irreducible.

Proof. If a is prime and a = xzy, then a‘x oraly,sox = ax’ ory = ay’, so a = ax'y or
a=zxay = a(l—2a'y)=0ora(l—2y')=0 = 1=2'yoray,soyisaunitorzisa
unit. ]

Example. Let R = Z[/=5] = {a + by/~5|a,b € Z} C C.

It is clear to see that this is closed under multiplication. We claim that 3 € R is irreducible but
not prime. We let 3 = (a + bv/—5)(c+ dv/—5), and define the norm as |a + v/—5| := va? + 5b2.
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Then squaring, 9 = (a? + 5b)(c? 4 5d?). Clearly neither of the values can be 3. so a? + 5b% = 1
or ¢ + 5d% = 1. Thus (a,b) = (£1,0) = (a + b\/=5) is a unit, or ¢ + dv/—5 is a unit. Thus 3
is irreducible.

But3? | (2+v=5)(2—v/-5) = 3|(2+V-5)(2—+v/-5).and3{(2++/=5)and 312 — /=5
since 2 + /5 # 3(a + by/=5), for a,b € Z.

Proposition. If R is a PID, then irreducible = prime.
Proof. Suppose a € R is irreducible, then it suffices to show that a is a prime ideal. Then

the ideal generated by «, (a) # R since a is not a unit. So there is a maximal ideal M where
(a) CM C R.

Since R is a PID, M = (b) forsome b = (a) C (b)) = a = bc for some c. (b) # Rsobis
not a unit. Since a irredcible, ¢ has to be a unit. Sob = ¢ la = b€ (a) = (b) C (a), so
(a) = (b), so (a) maximal and therefore prime. |

Proposition. Every prime ideal is maximal in a PID.

Proof. If I = (a) prime, then (a) € M C R where M is maximal, then let M = (b)) = a
(b) = a = be. ais prime so it is irredcible, so cis a unit. Sob € (a) = (a) = (b)) = (a)
maximal. ]

2.7 Unique Factorization Domains (UFDs)

Definition. Let R be an integral domain. For a,b € R, we say a, b associates if (a) = (b).
Note: (a) = (b) <= a = bu.

Proof. <=:(a) C (b)andb=u"'a = (b) C (a).

= :a=brandb=ay = a=arzy = a(l—-2y)—0 = (1—2y) =0 = =xisa

unit. |

Definition. If Risanintegral domain, then R is a unique factorization domain (UFD) if every
non-zero © € R can be written as a unique product of irreducible elements (up to associates
and reordering).

Example. If ¢ = a1---a, = by---by. Then a;,b; all irreducible, and r = m and after
reordering, a; and b; are associate.

Example. For Z, the units are +1. Prime elements are {+p ] p prime}. Z is UFD.
Example. Z[y/—5]is nota UFD.
Proposition. Integral Domain R is a UFD <=

1. Every irreducible element is prime.

2. R satisfies the ascending chain condition for principle ideals. Namely, (a;) C (a2) C
- C(ap) C -+ ,and F(a,) = (apy1) =~
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Proof. = : First assume R is a UFD.

(1). If @ € R irreducible and «a ‘ be, so for be = ax, write b, ¢, x as a product of irreducible
elements, where b = q1---q;,¢c = Y1+ Y4, & = X1+ Tp. SObc = ax = q QY1 Y =
axy---x,. Since R UFD, dg; or y; associate to a. Assume WLOG ug; = a for a unit a, so
ufla:qi|b = b=buva = a‘b

2). () CO) <= b ’ a. If (a) € (b), then a = bc, where ¢ is a non-unit. So the number of
irreducible factors of b <number of irreducible factors of a, so there can’t be infinitely many
strict inclusion in the chain.

Conversely, assume (1) and (2) holds. To show the existnece of factorization, let for a not unit
and cannot be written as product of irreducible elements, let S = {(a)}. We want to show
that S' is empty using Zorn’s lemma. Since S is a partially ordered set (by inclusion), every
ascending chain has an upper bound, so by Zorn’s lemma, S has a maximal element (a).

Then when a is not a unit and not irreducible (and since (a) € S), so a = bc), where a = be, b, ¢
not unit. Thus (a) C (b) and (a) € (¢) = (b),(c) ¢ S. So b and ¢ are products of irreducible

= =

elements, so a is a product of irredcible elements, which is a contradiction.

Uniqueness: Suppose a = 21+ &n = Y1 - Ym, Where z;,y; irreducible. Then y; |21 -2z,
and y; prime = ¥y | x; for some i. So, x; = uy; and x; irreducible = wu is a unit, so y1, z;
associates.

|
Theorem. Every PID is a UFD.

Proof. (1) It is proved that every irreducible element is prime.

(2)If (a1) C (a2) C ---. Let I = |J(a;), then I is an ideal. Since R is a PID, we want I = (b).
Since b € I, 3i such thatb € (a;), so (b) C (a;). But (a;) C (b), so (a;) = (b), s0 (a;) = (@i+1) =
(ai+1) = .... |
Remark: Fields C Euclidean Rings C PIDs C UFDs C integral domains C rings.

Definition. If R is an integral domain and a,b € R. Then d is the greatest common divisor of
a,bif

* d|laandd|b.
. Ifd"aandd’ b,thend’|d
Fact: In a UFD, gcd exists.

Fora = a1+ aiai41- - ap,b = b1 -+ bebiyq - - - m, a;, by irreducible, we can rearrage it so that
a;, b; associates for 1 < ¢ < ¢, and otherwise they don’t associate. So gcd(a,b) = a; - - - a;.

Remark: In Z[v/5], the ged does not exist.
Fact: In a PID, gcd(a, b) is a “linear combination” of a, b.

If (a,b) = (d), thend|aand d|band if d' |a and d’ | b, then (a,b) C (d') = (d) C (d') =
d|d
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2.8 Euclidean Domains

Definition. An integral domain R is a Euclidean domain if there isamap d : R\ {0} —
7, such that

e ifa,be R, b ’ a, then d(b) < d(a)

e Ifa,b e R\ {0},3t,r € Rsuch thata = tb+ r, where r = 0 or d(r) < d(b)
Example.

* R=17,d(a)=al.

e If R = F'[z] where f is a field, then d(f(x))= deg(f).

e For any field F, d(a) = 0Va € F'\ {0}.
Proposition. Euclidean domains are PIDs
Proof. If {0} ¢ I C Risanideal, then let a € I be a non-zero element with the smallest degree.
We want to claim that I = (a).
Ifo<bel wewriteb=at+r,r=0o0rd(r) <d(a).Butr =b—at € I,sod(r) > d(a), so it
has to be that r = 0, s0 b € (a). |

Example. Z[i] = {a+ bi |a,b € Z} is an Euclidean domain.

Proof. Letd : Z[i] — {0} — Z be d(a + bi) = a® + b*.

d is multiplicative: d((a + bi)(a’ + V'i)) = d((aa’ — bV') + (ab/ + a’b)i) = (a® + b*)(a'? + b'?) =
d(a + bi)d(a' + b'i).

(1): If @ = be, where a, b, ¢ # 0, then d(a) = d(b)d(c) > d(b).
(2): Suppose z,y € Z[i] and we want to divide z by y. If y = n € Z;, x = a + bi and I write

a=mng+r,r=0or|r| <nandb = ng 4+ r,r’" = 0or |r'| < §. This is possible since if
a=nqg+r 5 <r<nthena=n(g+1)+(r—n)lr—n| <3
Thenz = a+bi = (ng+7) +i(ng +r') =nlqg+i¢) + (r +ir'),and d(r +ir’) = r? + 1% <

2 2 2
=1 <n?=d(n).

Now suppose we are dividing = by an arbitary y, and we use the previous result by letting
n = yy = d(y) > 0. So we can divide zy by n where

Ty =qn+r, d(r) <d(n) = zy=qyy+r
Then claim that z = qy + (z — qy), where d(x — qy) < d(y). Notice that
d(x — qy)d(y) = d(zg — quy) = d(r) < d(n) = d(y)> = d(z — qy) < d(y)

Thus, this result holds. [ |

Example. This is not unique. 3 = (1+4)(1—14) +1,d(1) < d(1 —1i). Also3 = (2—14)(1 —1i) — 4,
d(—i) < d(1—1)

Remember that ged exists in any UFD. So if d = gcd(a,b), thend |a,d|band d' |a,d' | b =
&' |d.
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IF RisaPID, dz,y € R,d = ax + by.
If Ris a Euclidean Domain, and a,b € R # 0, I can find the gcd using the following algorithm

a = bqoro = ged(a,b) = ged(b, o)
bo = roq1 + 11 = gcd(b,ro) = ged(ro, 1)
Tntl = "ni2qnts +0 = gcd = rpy9

2.9 Polynomial Rings
Definition. For any commutative ring R, we define a polynomial ring
Rlz] ={ap + ... + ana” ’ a; € R}
If f(x) = anz™ + ... + a1z + ap, where a,, is the leading coefficient, n is the degree of f(x), and
ag is the constant term. If a,, = 1, then f(z) is monic.

Division Algorithm: If R is an integral domain and non-zero f(z), g(x) with g(z) monic, then
there are unique polynomials ¢(z), r(x) € R[z] such that f(z) = g(x)q(x) + r(x), where r = 0
or deg(r) < deg(g).

Proof. For existence, let n be degree of f and m be degree of g, proceed by induction on n.

If n =0, then f(z) = g(z) x 0+ f(x). deg(f) = 0 < deg(g) if g is non-constant. If g is a constant
=by # 0, then qp = bo‘g—g + 0, so still deg(r) < deg(g). Note that by = 1 since g monic.

If the statement holds for deg(f) < n, I can write f(z) = apz™+...+ao, g(z) = 2™ +... + bo. Let
fi(z) = f(x) — apz™ ™g(z). Clearly, since deg(f1) < n, by induction hypothesis, I can write
fi(z) = g(x)gi(z) + ri(z), with r; = 0 or deg(r1) < deg(g). So rewriting,

f(@) = fi(@) + anz™ "g(z)
¢@1(z) +ri(x) + anz” "g(z)

Uniqueness: f = gpg + 71 = g2 +r2 = ¢(q1 — g2) = r2 — r1. Suppose they are not
equal. Clearlyt deg(r1 — 12) < deg(g). Also, deg(g(q1 — g2) > deg(g) since R is a UFD (so
deg(f) + deg(g) = deg(fg)). This is a contradiction unless both sides are 0, so ¢ = g2 and
L =T

Remark: If F'is a field, the same argument shows for any non-zero f(z), g(x) € F[z].

Corollary. If Ris an integral domain, f(z) € R[z]and a € R. Then f(a) =0 < z—a| f(z)

Proof. Suppose f(a) = 0. Write f(z) = (x — a)q(x) + r(x), where r = 0 or deg(r) < 0 =
fla)=r.S f(a) =0 <= r=0 |
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Corollary. If R is an integral domain and f(z) € R[z] has degree n, then f(z) has < n zeros.

Example. It is important for this to satisfy integral domain property. In Zs, f(z) = 2% — 1 has
roots 1,3,5,7

Corollary. If F'is a field, F'[z] is a Euclidean domain.: d(f(x)) = deg(f). So F[z] is a UFD.

Definition. Let R be a UFD. For non-zero as,...,a, € R, d = ged(aq, ..., a,) exists, where
a, is unique up to associates. Then for f(x) = a,z™ + ... + a1z + ap € R[z], the content of
f(z),c(z) := ged(an, ..., a1,a0). And f is primitive if ¢(f) is a unit.

Lemma. ¢(fg) = ¢(f)c(g) up to units.

Proof. Case I: Suppose f, g primitive, want to show that fg is primitive. If f = anz™ + ... +
a1 + ag, g = bpx™ + ... + bixbg, then fg = cppma™™ + ... + 12 + ¢o. If fg is not primitive, 3
prime p € R such that p ’ ¢;Vi. However, f, g primitive. Suppose iy is the smallest ¢ such that
p 1 a; and jo be the smallest j such that p { b;. Then p { ¢;,4j,, Where ¢; 4, = aobig+jo + .- +
@iy—1bjo+1 + @igbjy + ... + aiy1j,b0. This is a contradiction.

Case II: Let f, g be arbitrary. Let f = ¢(f) f1,9 = c(g9)g1, with f1, g1 primitive so f1¢; primitive.
So fg = c(f)e(9)frgr = c(fg) = c(f)eclg) u

Lemma. If F is the quotient field of R and f(z) € R[z] is primitive, then f(z) irreducible in
R[z] <= f(x)irreducible in F[x]

Proof. <=: Suppose f(z) not irreducible in R[], then f(z) = fi(z)f2(x) for fi1, fo non-units
in R[z]. If deg(f1) = 0, thenitisa constant c — f =cfa = ¢ ] f = cunitsince f
primitive, a contradiction.

Then suppose deg(f2),deg(f1) > 1. Since units of F[z] are non-zero constants, f(x) not irre-
ducible.

= : Suppose f(z) € R[z] canbe written as f = f1 f2, f1, fo € F[z],deg(f1, f2) > 1. Write f; =
Z—Zx" + ...+ bocy, bi,ci € R.Soifry =c1---¢, € R, thenry f; € R[z]. Let g = cfy. Similarly
there is Tro € R such that g2 = T’QfQ S R[I] — g192 = 7‘17’2f1f2. So g1 = C(gl)hl,gg = C(gg)hg
with hy, ho € R[z] primitive. So ¢(g1)c(g2)hihe = riref = taking contents, ¢(g1)c(g2) =
r172 Uup to units.

So uce(g1)e(ge) = rire for unit w, so uh1hy = f = (uh1)he = f. Combining with deg(h) =
deg(g1) = deg(g1) > 1, we have f irreducible in R|x]. |
Example. f(z) =2z + 2 € F|x] is irreducible in Q[z] but not in F[x]

Theorem. If R is a UFD, then R[z] is a UFD.

Proof. Case 1: If f(x) primitive, then f(z) € F[z] can be written as f(z) = fi(z)--- fu(z),
where f;(x) irreducible in F'[z]. 3b; € R such that b; f;(x) = g:(z) € R[z].

Then, let ¢; = ¢(g;) = c¢;hi(z) = bifi(x) for some h;(x) primitive in R[z]. Write this as
fi= %, S0 by ---bpf(x) =c1---cphi(x)-- - h(z). Therefore, by - - - b, = ¢ - - - ¢, up to units, so

€1 Cp =uby by, s0 f(x) =uhy(x) - hy(x)

Uniqueness: If f(z) = p1 -+ pn(x) = ¢i(x) - - - gm(x), where p;, g; irreducible in R[z]. Then f(x)
primitive = p;,q; primitive Vj == by the lemma, p;, ¢; irreducible in F[z]Vi, j. Since
Flz]isa UFD, n = m, p_ = g; up to reordering and multiplying So p; = 3*¢;, a,b € R =
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bipi(z) = a;q;(x) = by p;, ¢; primitive that b, = a; up to a unit, b; = u;a;, = wp;, = ¢ =
pi = g; up to unit.

Case 2: Let f(z) € R[z| be arbitrary, let ¢ = ¢(f) = f(x) = cg(z), where g(z) is primitive.
From case 1, we can write g(z) = g1(x) - gn(z), where g; € Rx] irreducible. Then f(z) =
cqr(x) - gn(x).

When we factor cin R, ¢ = ¢1-- ¢y, = f(z) = ¢1--cmg1(2) - - gn(2), all irreducible in
RJx].

Uniqueness: Suppose f(x) = fi--- fn = g1 gm, Where f;,g; € R[z] irreducible. Consider
cases when their degree is 0 and greater than 0. |

Corollary. If R UFD, then Rx1, ..., z,] is a UFD for n > 1.

2.10 Eisenstein Criterion for Irreducibility
Let Rbe UFD, f(x) = apa™- -+ a1z + ap € R[z], n > 0,a, # 0.
Theorem. If p is a prime element in R such that
*p ’ ai,0<i<n
* ptan
s p*fao
Then, f(z) is irreducible.
Example. 22 + y? + 1 € Clx,y] is irredcible
Proof. Consider R = C|[z] as a UFD and C|z, y] = C[z][y]. Rewrite as y? + (z + 1)(x — i), where

(z +1)(z — i) irreducible in R = C[z]. Wehave z +i |22 + Lz +i{1,(2* +1)?{2? +1 =
z% 4+ y? + 1 irreducible. [ |

Example. f(z)=a2P"' +2P~? + ...+ x + 1 € Z[x] is irreducible for p prime.

Proof. Consider f(z +1)=(x+1)P + (z +1)P 2+ ..+ (x+ 1) + 1.

M=

flat1) =) (a+1)
i=0
p—1 1 i ‘
= ()xﬂ 0<i<p—1,0<j<i
iz0 j=0
p—1 p—1 i
- (Z())
i=o \i= VY
Setc; =37 (;), and I claim that p | ¢;,¢p—1 = (g:}) = 1. Using the identity (;) +o (7)) =
(?:11), ¢ = (jil) = W;_]_l), Also ¢y = (!) = 1, so p* { ¢y. Therefore by eisenstein
criterion, f(x + 1) irreducible, so f(z) irreducible. [ |
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Proof of Eisenstein Criterion. If f(z) =
cp® + - e1x + cp. I deg(g) = 0,g(x
contrad1ct1on.

g(z)h(x) non-units with g(z) = b.z" +- - - bix+bg, h(z) =
) = bg and by ] a;Vi = since f primitive, b; is a unit, a

So assume r > 1. Then p|ag = boco,p? t bocy == either p|bo,p f co or p { by, p | co. Also,
pta, =b.cy, = ptb,

Now, let ¢ > 1 be the smallest number such that p t b;, and we have i < r > n. Then
a; = boc; + bjc;_1 + ... + b;_1¢1 + b;cg. However, p ’ a; and p ’ boc; + b;ci_1 + ... + b;_107 =
P ‘ bico = p ] b; orp ‘ cp, both not true. Therefore contradiction. [ |
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3 Modules

Definition. Suppose we have arbitrary ring R and abelian group M such that there is R x
M — M, (r,m) — rm with distributivity. This is a left module, and satisfies the distributivity
below:

e (r+sym=rm+sm

® r(mq +ma) =rmy + rms

* (rs)m =r(sm)

* Ipm=m
Fact: If R is a field, then this is a vector space.
Modules also satisty the following properties:

* r0n = 0n

* Opm =0y

e (—r)m=—(rm)

Definition. If ) # N C M, then N is a submodule if it is a subspace of M and r € R,n €
N = rn € N.

Example.
* Let R be aring and R be a module over R. Submodules are (left) ideals in this case.
¢ Every abelian group is a module over Z. Then submodules correspond to subgroups.

Definition. If M, N are R modules, then f : M — N is a R-homomorphism if f is a group
homomorphism and f(rm) = rf(m)v¥r € R,m € M. Note that ker(f) C M as a submodule,
and im(f) € N as a submodule.

Remark: If f is an isomorphism, f~! : N — M is also a R-homomorphism.

3.1 Isomorphism Theorems
If N C M is a submodule, then M /N has the structure of a R-module.

r(m+ N):=rm+ N

well-defined: Doesm + N =m’ + N = r(m+ N) =r(m’ + N)?. yes, because m —m’ € N
andr(m—-m’) e N

Isomorphism Theorem 1: If f : M — N is a R-homomorphism, then

M/ ker(f) ~im(f) as R-modules

Theorem 2: If Ny, N, are submodules of M, then Ny + Ny := {z + gy | x € Nj,y € Na}tisa
submodule of M, and N; N Ny is also a submodule of M, and

N2 NN1+N2 N1+N2

~ : N e = N
NN, N, f 2 — N , f(n2) =na + Ny
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Theorem 3: If N C M and K C N are submodules, then N/K is a submodule of M/K, and

M/K

N/K ~ M/N

Theorem 4: If N C M is a submodule, the canonical map M — M/N,m — m + N induces a
1-1 correspondence between submodules of A/ /N and submodules of M containing N

3.2 Direct Product and Sum of Modules

Let R be an arbitray ring and {M; };cz be a family of R-modules. The direct product is defined
as

[1 M = {(@)iez | @i € M}, r(wi)ier = (rzi)iex
i€z
Direct Sum is defined @, ; M; = {(x:)icr ‘ x; € M;,all but finitely zero}
Remark: If M is a module and N;, Ny C M are submodules such that
o MyN M, ={0}
o My+My=M
Then M ~ M; & My ~ M, (my,mz2) — mq + ma.

3.3 Exact Sequences

Definition. Let R be a ring and M, M', M" be R-modules. A sequence of R-homomorphism

M’ L5 M 25 M7 is called exact if im(f) = ker(g). More generally, sequence M; ELN M, ELR
M is exact if im(f;) = ker(fi+1).

Example. The sequence 0 — M’ L5 M, is exact if and only if f is injective.

Example. The sequence M -2+ M" — 0 is exact if and only if g is surjective

Definition. If 0 — M’ L> M L5 M” — 0 is an exact sequence, then it is called a short exact
sequence

Example. If N C M is a submodule,0 — N — M — M/N — 0.

Proposition. Let 0 — M’ é M £ M" — 0 be a short exact sequence of R-modules. Then
the following conditions arewequive(lblent.

1. 3 R-homomorphism ¢ : M"" — M such that g o ¢ = idps~

2. 3 R-homomorphism ¢ : M — M’ such that o f = idy
and they imply M ~ M’ & M". In this case, we say the sequence splits

Example. R = Z4,M = Z4,N = {0,2}. Then 0 - N — Z4 — Z4/N — 0. Notice that
P(1) =0 = ¢¥(2) =0and ¢(1) =2 = (2) = 0. Therefore this does not split.
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Proof of Proposition. (1) = (2) : If m € M, then g(¢(g(m))) = g(m) = g(m — ¢(g(m))) =
0 = m—¢(g(m)) € ker(g) =im(f) = 3z € M’ such that f(x) = m — ¢(g(m)).

Let ¢»(m) = x. We need to check that ¢ is a R-homomorphism (exercise), and ¢ o f = idy :
ity € M',letm = f(y). Then m — é(g(m)) = f(y) — o(9(f(y))) = f(y). By definition of
=0

Yip(m) =y = »(f(y) =yVy
(2) = (1): Suppose x € M", then Jy € M such that g(y) = z. Thenlet ¢(z) =y — f(¥(y)).

This is well-defined: If ' € M such that g(y') = x. I want to check that y — f(¢(y)) =
Y = f((), ory —y' = f(¥(y —y)). But g(y —y) = 0. Since ker(g) = im(f), Iz €
M’ suchthaty —y' = f(z2) = f(d(y—y')) = F(¥(f(2))) = f(z) =y — . So ¢ well-defined.
Also go ¢ = idpyp: Itz € M, ¢(x) = y — f(¥(y)) for some y € M with g(y) = =z, so

g(d(x)) = g(y) — g(f(¥(y))) = g(y) = x, since g o f = 0. Also ¢ is a R-homomorphism, since
Vr,s € R,x1,80 € M", ¢(rzq + sx2) = ro(x1 + so(z2)).

Direct Sum: Define
M & M" =5 M, (z,y) — f(z)+ ¢(z)

M E5 M@ M",m i ((m), g(m))
Then g o a(x,y) = B(f(z) + ¢(y)) = (z,y), since ¢ o ¢ = 0 (Show this as an exercise:) ]

3.4 Module Homomorphism

Definition. Let M, N be R-module, with Homg(M, N) being the set of R-homomorphism
f:M — N,and Hompg(M, N) has the structure of an R-module.

Let f,g € Homgr(M,N) if f + g € Homgr(M,N). Note (rf)(m) = rf(m),(f + g)(m) =
f(m) + g(m). We have

Homp(M,N) =L Homp(M', N)
Homp(N,M") L°=5 Homp(N, M)

M— oy

N’ N

Lemma. If0 — M’ L M % M” — 0is a short exact sequence of R-modules and N is a
R-module, then

(1). 0= Homp(N,M") % Homp(N, M) 2 Homp(N, M") exact

(2). 0— Homg(M",N) — Hom(M,N) — Hom(M', N) exact

f

M’ M—— M"
R -
Proof. OW foa=p " gop .-

- -~

N~
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Hompg(N,M') —r Hom(N, M) injective: If f o @ = 0 for some oo € Homp(N, M’), then since
f injective, o = 0.

porp =0(= im(y) C ker(¢)) : If « € Homg(N,M'), then ¢ o () = g o f o« = 0, where
g o f = 0 since it is exact.

If 5 € ker(¢), then go § =0, so for any z € N, g(8(x)) = 0, s0 5(z) € im(f) = thereisa

unique y € M’ such that f(y) = B(x). Let o : N — M’ be defined by «a(z) = y, then avis a
R-homomorphism (Exercise). And clearly 8 = f o «,s0 3 € im(z)) [ |

Remark: If M’ C M is a submodule, then 0 — M’ — M — M /M’ is a short exact sequence. If
g: M — M" is a surjective R homomorphism, then 0 — ker(g) - M — M"” — 0 is a short
exact sequence.

3.5 Free Module

Definition. If M is a R-module, and S C M is a basis if Vmm € M, m = r1s1 + ... + rxsp ina
unique way with r € R, s € S. Equivalently, if 0 = 7151 + ... + rys, thenr; = ... =7, = 0. If
{si}iez is a basis for M, then M ~ @, R. Then, M is free is it has a basis.

Definition. If R is aring and P is a R-module, then P is a projective module if it satisfies the
following:

1. If g, ¢ are R homomorphism, 3¢ : P — M, R-homomorphism such that go ¢ = ¢

P
g
M 2 M7 0

2. If0 - M' - M — P — 01is exact, then it splits.
3. There is a R-module N such that N @ P is a free module.
4. If0 — M’ — M — M" is exact, then

0— Hom(P,M") = Hom(P,M) — Hom(P,M") — 0
is exact.

(1) = (2). f0 - M’ - M — P — 0Oisexact, thenby (1) 3¢ : P — M such that got) = idp,
so the sequence splits

|
(2) = (3). Let {x;}icz be a generating subset of P as a R-module. Then, g : @,., R —

P, (ri)icr ¥ ;e Ti%s. is surjective. Then, 0 — ker(g) — @,.; R — P — 0 is a short exact
sequence. By (2) this splits, so free R-module @, ; R ~ ker(g) @ P. |
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(3) = (4). Itis enough to show that Hom(P, M) — Hom(P, M") is surjective. If P is free
and (z;);es is a basis for P and let y; = ¢(x;) and z; € msuch that g(z;) = y;. Then let
Y(x;) = zpand (D riws) = Y rizi. Then gop = ¢. If N @ P is free, then ¢(r,p) = ¢(p) is a
R homomorphism, 3¢ : N @ P — M such that g o ¢ = ¢. Define ¢ : P — M, (p) = ¥(n,p),

then g o 1) = ¢.

P Q=NoP
//’/ ) == ///’/ J{~
Pl Pt
g " K g "
M — M M—— M

(4) = (1). The surjective map g : M — M’ gives a short exact sequence 0 — ker(g) —
M — M" — 0. So by (4) there is a surjective map Hom(P, M") — Hom(P, M). This is exactly
1. ]

Example. R = Zg. Let Zg be a Zg-module and I; = {0,3}, > = {0,2,4}. Then I; N I, = {0}
and I + [y = Z¢ = Z¢ = I1 + I3. Soby 3, I, I, are projective modules but not free.

3.6 Finitely Generated Modules over PIDs

Theorem. If Ris a PID and M is a finitely generated module over R, then

R R
M~R® - ®RD ;B & —
D1 Py

where py, ..., py are irredcible (prime) elements of R. In particular, finitely generated projective
modules are free over R.

Let R be an integral domain and M be a R-module, m € M. m is torsion if there is 0 # r €
R such that rm = 0. So let M,,, be set of torsion elements in M, so M;,, is a submodule,
where my,mo € Mo, = mq + mo € M;,,.. M is torsion if M = M,,,, and if torsion-free if
M, = {0}. Free modules are torsion-free.

Recall that for abelian groups, torsion free does not imply free, take Q@ as example. Meanwhile,
torsion free and finitely generated implies free group.

However in arbitrary integral domain, torsion free and finitely generated does not imply free
group. One example would be R = C[z,y], M = (z,y) [proof of example not written down]

Fact: Suppose R is a PID
¢ A submodule of a finitely generated R-module is finitely generated
o If M is finitely generated R-module, then M ~ M, ® N for a free R-module N.

Note, making it a PID makes everything similar to Z

3.7 Tensor Products

Let R be a ring and M, N be R-modules. Let F' be a free module generated by elements
(myn),m € M,n € N. F = {ri(my,n1) + ... + rg(mp, ng) ’ r; € Rym; € M,n; € N}. D is the
submodule of F' generated by elements of the forms below
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1 +mz,n) — (my,n) — (mz,n),

(m
(m,n1 +n2) — (m,n1) — (m,n2)
(rm,

n) —r(m,n)

(mmn) - r(m, TL)
withr € R,m,my,ms € M,n,ny,ny € N.

Let T := F/D be an R-module. Note thereisamap a: M x N — T,a(m,n) = (m,n) + D.
This map is bilinear: a(rimq + rome, n) = ria(m,n) + rea(me, n) and a(m,ring + rong) =
ria(m,ny) + roa(m,ng)

Proof of above requires us to show (rim; + rema,n) — r1(my,n) — ro(me,n) € D. Rewrite
expression into ((rymq+rama, n)—(rimy, n)—(reme, n))+((rimy, n)—ri(ma, n))+((romae, n)—
r2(m2,n))

T has the following universal property: If @) is a R-module and ¢ : M x N — Q is a bilin-
ear map, then there is a unique R-homomorphism ¢ : T — Q with ¢ = 1 o ¢, and define
Y((ri(ma,na) + o+ r(mu, i) + D) = rid(ma, na) + ..o+ red(my, ).

We need to check that ¢ is well-defined and is a R-homomorphism. For well-defined, it suf-
fices to show that elements € D.

We denote tensor product of M and N as M ®g N =T = F/D. Any element is of the form

ri(my,n1) + ... + re(mg,nk) + D = (rimq,ny) + ... + (rpmyg,ng) + D

=M @na AT MR @1,
Proposition. The following properties are satisfied:
1. m® MM +n2) =men; +mengy
2. (mi+me)@n=m @n+mas@n
3. (rm)@n=r(men) =m® (rn)
4. 0n=0=m®0
Example.
* Z,®,Q={0}:a®? —a®bp —pa®%:O®% =0.
® Zo®Zs={0}:00x=0,120,2=0.Finally 1®1 =1®(2+2) =2®1+2®1 =040 = 0.
e gcd(m,n) =1,Zy, ®z Z, = {0}
Proposition. If M, N, P are R-modules, then
* MR N~N®rM
* MQrN)QrP~M®gr(NQgrP)
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e Mer(N®P)~Mer NOM ep P
e M ®rR~R®r M ~M

Proposition 1 Proof. M x N < N ® M is clearly bilinear, (m,n) — n ® m

M x N = N®M

\ -

M &N

By the universal property, we have R-homomorphism ¢(m ® n) = a(m,n) = n ® m. Con-
versely, 3R-homomorphism ¢ : N@ M - M @ N,andn ® m — m®@n,and ¢ o ¢ and 1 o q5
are identity maps.

Proposition 2 Proof. Fix m € M and define o, : N x P - (M ® N) ® P,(n,p) — (m®
n) @ p. Then, oy, is bilinear: ap(n,p1 + p2) = am(n,p1) + am(n,p2). am(ny + n2,p) =
am(n1,p) + am(na, p). am(m,p) = ram(n,p). am(n,rp) — ram,(n,p). Together, this implies
that 3R-homomorphism ¢,, : N@ P — (M ® N) ® P.

Now, we have a bilinear map ¢ : M X (N ® P) - (M ® N) ® P,¢)(m,x) = ¢, (z) and show
that this is bilinear.

o Y(m,x1 + z2) = Y(m,x1) + (M, x2)
e Y(m,rz) =rip(m,x)

So ¢, is a R-homomorphism. Also ¢(m1 + ma,x) = ¥(m,z) + Y(me,z) and Y(rm,x) =
7“1/1(77% (E) SO ¢m1+m2 = wml + 'l/)m2~

Since there is a bilinear map, 3R-homomorphism~y : MQ(N®P) - (MRN)@P,m®(n®p) =
(m®n) p.

Similarly, there is a R—homomorphism § : (MQN)®@P = MQ(N®P), (m@n)®p — m(ndp).
7, B are inverse maps, so they are isomorphisms. u

Proposition 4 Proof. There is a binear map M x R = M, (m,r) ~ rm bilinear. So there is an
R-homomorphism ¢ : M ® R — M, m ®r + rm. Also there is an R-homomorphism ¢ : M —
M@R,m—m®l.pop=1id dop(m®r)=¢(rm)=rmel=mer — ¢otp =id = ¢
isomorphism. [ ]

Example. Consider R[z] ® r R[z], where R is a commutative ring, we claim that R[z] ® R[z] ~
Rz, y].

Let ¢ : R[z] ®r r[z] — Rlx,y] be the R-homomorphism induced by the bilinear map R[x] x
R[z] — Rlz,y], (f(2), 9(z)) = f(z)g(y).

To define 1, note that R[z, y] is a free module over R with basis z'y?,0 < i, 5. Let ¢ : Rlx,y] —
R[z] ®r R[x] be such that ¢ (ziy’) = 2° @ 27.

¢, 1 are inverse maps: x'y’ L rigal & o'y, f(r)®g(z) = > i Qn i @x LN ziy N
' @al.
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Proposition. Let 0 — M’ — M — M"” — 0 be a short exact sequence of R-modules, and let V
be an R module, then
M @rN—-M@rN—M'®@r N -0

is exact. Here, M’ Iy M induces M’ ® N 124, M®@N,> m,@n;— > f(m)) ®n;.
Lemma. Let M, N,Q be R modules, then Homgr(M ®r N,Q) ~ Homgr(M, Homg(N, Q)).
Corollary. If Q = R, (M ®p N)¥ ~ Homp(M,N").

Example. Let k be a field, R = k[z,y|/(z,y),M = R/(z), N = R/(y). Then, M @ N =
R/(z) ® R(y) ~ R/(x,y). Also, (M @r N)* ~ (R/(x,y))" = Homg(R/(z,y), R) = {0}.

Also, MV = Hom(R/(z),R) ~ M, NV = Hom(R/(y), R) ~ N. Consider ¢ : R/(z) = R,1 >
f_‘,O:ff*—)H:O,fEk[x,y} == %fE(l’y) == fe(y)

SoMV®@NY~M®@N ~R/(z,y) # {0}

Proposition Proof using Lemma. If M’ — M — M"” — 0 is exact, then let Q) be an arbitrary
R-module and take Hom(—, Hompg(N, Q)). Then we have exact sequence

0 — Hom(M",Homp(M",Q)) = Homp(M,Homg(N,Q)) = Homgr(M'Hom(N,Q))
So we have an exact sequence
0— Homp(M" @ N,Q) — Homr(M @ N,Q) — Homg(M' @ N, Q)

So by homework 9 question, M’ @ g N - M @g N - M" @ N — 0 is exact. [ ]

Example. Let0 — Z i> 7 — Z, be a short exact sequence of Z-modules and tensored with
Zo, where f : a — 2a.

Then, Z ® Zs — Z Q@ Z». [fill in from notes]
——
~7o
Proof of Lemma. Define ¢ : Homp(M ®r N,Q) — Homg(M, Homg(N, Q)), where (o : M ®
N —=P)— (8: M — Homg(N,Q)). B:m+— B, B8(n) =a(men) € Q.
Ineed to show that 8 is R-homomorphism, ¢ is R-homomorphism.

B homomorphism: § € Homgr(M, Homg(N, Q)) : Show that 5, m, +roms = 7108m; +728m,- SO,
Brimy+rams (1) = a((rimi+r2ma)®@n) = a(ri(mi@n)+ra(me®@n)), and (r18m, +7208m,)(n) =
ria(m; @ n) + roa(ms ® n), which is true

¢ homomorphism shown similarly.

Also define ¢ : Homg(M, Homgr(N,Q)) = Homgp(M ®r N,Q) with 5 : M — Hompg(N, Q)
given. Define bilinear map M x N — @, (m,n) — B(m)(n), this givesamap a: M @r N — Q.

So ¢, are inverse maps. [ |
Definition. A module F is flat if for any short exact sequence 0 — M’ LM 2 M7 = 0, the
following sequence is exact:

0=-MoF 2% e r 2 v o F —0
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Equivalently, F is flat if for any R-homomorphism f : M’ — M, M'® F — M ® N is injective.

Example. Z, is not a flat Z-module. Consider Z — Z,n +— 2n. Z® Zo — Z Q Z2,a @ b
2a ® b = a ® 2b = 0. Not injective, so this is not flat.

Example. Suppose R is an integral domain:

* Free modules are flat. If F' is a free R-module, F' ~ @, ., R, f : M' — M is an injective
map that gives the following injectvitiy.

M ®F M @ (D; R) DO, M @R D, M’
J{f@id & lf@d = l@ f®id = l@f
M@ F M® (6, R) D, MR P, M

* More generally, projective modules are flat. If P is projective, 3P’ such that for a free
module F, F = P @ P'. Then if M’ — M is injective, then M’ ® F — M ® F by the
previous example. So M’ @ PP M' @ PP — M @ PP M @ P’ is an injective map
= M’'® P — M ® P is injective.

¢ Flat module does not necessarily imply projective modules. Q as a Z-module is flat.
[Check 11/29 minute 30 for proof] But Q is not projective. Suppose Q & P’ is free, then
pick a basis and write (1,0) = \z1+...+ApZy, 21, ..., T, partof abasis and Ay, ..., A\, € Z.
Pick N where N > |1],...,|\,|. Then write (4,0) as a combination of basis elements,
where (3;,0) = c121 + ... + ¢y Ty, Where c1, ..., ¢, € Zmay be 0. So (1,0) = Neyzy + ... +
Nepxy. If ¢; # 0, then |[N¢;| > ||, so they cannot be equal.

e If Fis a flat R-module, then it is torsion-free. We need to show that if 0 # « € F and
0#7¢€ R, thenrz #0. Let R ER R, s — rs be multiplication by r. Then f is injective
since R is an integral domain. So, RQ F’ 94, RoFis injective. 0 # 1@z — 1@z = 1Q@rz.
Sol®rx#0,rx#0

Note: Free =—> Projective = Flat —> Torsion-free

Let R L Sbea ring homomorphism.
* Any S-module M has the structure of an R-module, rm : f(r)m

* Now, suppose N is a module over R. N @ S is a R-module which has the structure of
S-module, s(n; ® 51) 1= n1  $$1

If ¢ : Ny — N3 is a R-homomorphism, ¢ ® id : N1 @ S — Ny @r S is a S-homomorphism.
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4 Category Theory

Definition. A category C consists of a collection (class) of objects Obj(C). For any two objects
A, B of C, a set of morphisms Hom¢(A, B) satisfies for any object A C Obj(C), there is a
morphism 14 € Hom¢(A, A) and a composition function Hom¢(A, B) x Home(B,C) —
Home(A,C),(f,g) — gf. which is associative: (hg)f = h(gf), fla = f,15f = f.

Alsps ot p

Example.
e Cis a category of sets Obj(set), and Homsge (A, B) are functions from A to B.

* Let S be a set with a relation ~ that is reflexive and transitive, and C is a category 0b;(C).
Home(a,b) = ¢ifa # band {(a,b)} if a ~ b.

a € obj(C),1, = (a,a) with composition (a,b) € Hom(a,b), (b,c) € Hom(b, c) therefore
(b,¢)(a,b) = (a,c).

® Let C be a category, A € Obj(C) and C4 be a new catory, where objects are morphism
from any object of C to A.

Home,(f,9) = {c € Home(B,C) | go = f}

and Home, (f,g9) x Home,(g,h) — Home,(f,h),(0,a) — ao. So h(ao) = (ha)o =
go=f,and 1gf = f.

4.1 Morphisms

Definition. Let C be a category, f € Hom¢(A, B). Then f is an isomorphism if it has a two-
sided inverse under composition with g € Hom(B, A) so that gf = 14, fg = 1. This inverse
is unique, and is denoted by f~.

This has the properties that

* (1a)'=1a

s (fg)t=gtf"

S ()=
Example.

e If C is a set, then isomorphism are bijections.
e ~onS: (a,b)is an isomorphism <= b~a

Definition. f € Hom¢(A, B) is a monomorphism if VC € Obj(C) and g1, 92 € Home(A,C)
with fg1, fg1, we have g1 = ga.

Definition. f is an epimorophism if VC € Obj(C), hy1, ha € Home(B,C) with hy f = hof, we
have hy = hy

Example.
¢ For C a set, a monomorphism is injective and epimorphism is surjective.

e For S, ~, all morphisms are monomorphism and epimorphism.
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4.2 Initial and Final Objects

Definition. For category C,I € Obj(C) is initial if for any A € Obj(C), Hom¢ (I, A) has one
element. F' € Obj(C) is final if for any A € Obj(C), then Homc (A, F') has one element.

Example.
e For C a set, () is the initial object, any singleton set is a final object.
e For (5, ~) with (Z, <), there is no initial or final object.
Note: Initial and final objects are unique up to isomorphism.
Example.
e For category of sets, initial object is () and final object is singleton set.
¢ For category of groups, initial object is {e} and final is also {e}.
e For category of rings, intial object is Z, final object is {0}.
¢ For category of R-modules, initial element is {0} and final is {0}.
* For category of fields, there are no initial and final objects
Definition. A category C is a groupoid if every morphism is an isomorphism.

Example. If ~ on S is an equivalence relation,

(ab)
a’ b

Y —
(ba)

Definition. If A € Obj(C) isomorphisms € Hom(A, A) are automorphism, they form a group
denoted by Aut(A)

Fact: A group is a groupoid of 1 object!

4.3 Product and Coproduct

Definition.  Let C be a category with A,B € Obj(C). Z is a product of A, B if 3f €
Hom(Z,A),g € Hom(Z, B) such that VC € Obj(C), 01 € Hom(C, A),02 € Hom(C, D),3¢ €
Hom(C,Z)suchthat fo¢ =01,90¢ =09

A

o1
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Definition. Itis a coproduct is the following diagram commutes:

If product (coproduct) of A, B then it is unique up to isomorphism. If Z, Z’ coproduct ¢ : Z —
Z',¢ L — Z (replace C with Z’ from above). Then ¢ o 05 = g, 0 g = 0.

Example. For set A, B, A x B is the product and the coproduct is the disjoint union AL B. By
definition, {1,2} U{2,3} = {1,2,2/,3}.

Example. For groups G1, G, the product is G; x G2 and the coproduct is free product G * G
(Note that G; x (3 is only coproduct when it is abelian.)

fill in examples from written notes

4.4 Functors

Definition. Suppose C and D are categories and F' : C — D is a covariant functor if VA €
0bj(C), F(A) € 0bj(C) and a function Hom¢(A, B) — Homp(F(A), F(B)) such that

hd F(lA):lp(A). AiBi)Z

o F(aB) = F(a)F(B). F(4) =2 pB) £ p(z)

45



	Groups
	Cosets
	Normal Subgroups
	Quotient (Factor) Groups
	Group Homomorphisms
	Isomorphism Theorems 
	Simple and Solvable Groups
	Group Actions
	Sylow Theorems
	Dihedral Group
	Direct Product of Groups
	Automorphisms
	Semi-Direct Product of Groups
	Classification of Small Groups

	Rings
	Ideals and Quotient Rings
	Maximal Ideals and Prime Ideals
	Chinese Remainder Theorem
	Product of Rings
	Localization
	Principal Ideal Domains (PIDs)
	Unique Factorization Domains (UFDs)
	Euclidean Domains
	Polynomial Rings
	Eisenstein Criterion for Irreducibility

	Modules
	Isomorphism Theorems
	Direct Product and Sum of Modules
	Exact Sequences
	Module Homomorphism
	Free Module
	Finitely Generated Modules over PIDs
	Tensor Products

	Category Theory
	Morphisms
	Initial and Final Objects
	Product and Coproduct
	Functors


