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Logistics.

Office Hours: Tuesday 4-5, Thursday 1:30-2:30. Cupplies I 202.
Homework: Weekly, collected Thursday. (First 9/5)

Exams: One midterm. Thursday October 17th (TBD.)

1 Fundamentals

1.1 Set Theory

Let X be some ambient space and F be a collection of subsets A C X. For notation we

write
UAa: U A={zre X :2 € Aforsome A € F}

acA AeF
(JA4a=[)A={reX:VAc F}
acA AeF

Note that most of the time F would be countable. Otherwise, for example, R =
U,erd{z} would be zero measure.

1.2 Countable Sets

F is countable if 7 = () or 3 injection ¢ : F — N, and note that countable union of
countable sets is countable.

For set complements, the course prefers X \ A rather than A¢

Recall that De Morgan’s Laws are given as

xX\JAa=N&x\4

AeF AeF
X\ (4= Jx\4)
AeF AeF



2 Abstract Measure Theory

Definition. The power set P(X) is the set of all subsets of X.

Often, a measure cannot quite act on all elements of P(X). Thus, we limit this to
o-algebras.

Definition. A collection F C P(X) is a o-algebra if

L. OerF.

2. X\E€F,VE€F.

3. If Ey, Es, ... € F, then countable union | J;°, E; € F.
Remark: If Fy,... € F,then N E; = X \UX \ E;) € F

2.1 Measure Spaces

Definition. Let F be a o-algebra on a set X. A function p1 : F — [0, 00| is a measure if
1. p(0)=0
2. Countable Additivity: For disjoint and countable Ay, As, ... € F, it is the case that

% <U Ai) = ZM(Ai)
i—1 =1

We call the tuple (X, F, ;1) a measure space. Sometimes (X, F) is called a measurable
space

Measures satisfy

1. Monotonicity: It A C B, A, B € F, then

u(B) = (AU (B\ A)) = p(A) + p(B\ A) = p(4) < pu(B)

2. Subadditivity: Let Ay, As,... € F. Write UA; = UB;, where B; € F,B; C A;,
and B; disjoint. This can be constructed with By := A;,By = Ay \ B1,B,, =
Ap \ UicnBi, so therefore p(UA;) = pw(UB;) = > u(B;) < > u(4;), where the
last inequality follows from monotonicity.

3. w(B\ A) = u(B) — u(A) only when A, B € F and p(A) < oo
Remark: Subadditivity is often very useful.

Example. Suppose we throw two dices. The natural event space is X = {(,7) :
i,j € {1,...,6}}. In this case, the sigma algebra can be entirety of P(X). One can then
naturally define p(A) = |A|/36.



2.2 Outer Measures

Definition. We say p : P(X) — [0, o0] is an outer measure if
1. @) =0
2. AcCBC X = u(A) <u(B)
3. f A=U;A;,A; € X, then u(A) <> u(Ay)

Now, if we have an outer measure, we can to find a o-algebra F such that p|r : F —
[0, 00] is a measure. Thus, we have the following definition of measurable sets:

Definition. Given an outer measure ; on X, we say £ C X is p-measurable if
VA C X, we have
u(A) = p(ANE) + u(A\ E)

We also write the collection of measurable sets as
M, = M,(X)={F C X : p — measurable}
Remark: Note that due to subadditivity, it suffices to check that pu(A) > p(ANE) +
w(A\ E)VA C X with p(A) < oo.
Example. Define p: P(X) — {0,1} by u(0) = 0and pu(A) =1, A # 0.

Here, monoticity and subadditivity clearly holds (check notes for detail.) We claim
that M, = {0, X}. Suppose thereis ¢ # A # X. Then p(X) =1 <2 = p(A) + p(X \
A) = A¢M,.

Theorem. Let ;1 be an outer measure on X. Then M, is a o-algebra, and if E1, s, ... €

M,, are disjoint, then
@ (U Ez) = ZM(Ez')

Proof. Claim 1: If ;(E) = 0 satisfies E € M,,; inparticular, () € M,,.

Notice that VA C X, u(A) > p(A\ E) = p(ANE) + p(A\ E) by monoticity and
uw(ANE)=0.Thus, E€ M,

Claim 2: F C X measurable <= X \ E measurable. This is obvious from definition.
Claim 3: By, .., B, € M, = UN, E; € M,,.

It suffices to prove N = 2. Let A C X be a test set for measurability. Since £y € M,
w(A) = (AN Ey) 4+ u(A\ Eq). We can expand this again into

p(A) = p(ANE1) + p(AN (X \ E1) N Ey) + p(AN (X \ E1) \ Bs)
=p(A\(E1UEL))
> u((AN By U (AN (X \ Ey) N By)) + pu(A\ (By U By))

= WAN(E1UE)) + u(A\ (Bt UEy)) = [E1UE; € M,




Claim4: Ey,....E, € M, = ﬂfvzl E; € M,. This is clear since ﬂf\il E;, = X\
UL (X \ E)).

Claim 5: If E, F measurable, then E \ F measurable.

Claim 6:If E, ..., En € M, disjoint, then VA C X need not measurable,

N N
7 (Aﬁ UE) = ZM(AﬂEz‘)
i=1 i1

Again, it suffices to show N = 2.
/L(A N (El U Eg)) = IU,(A N (El U EQ) N El) + ,u,(A N (El U EQ) \ El)
= u(ANEL) + u(AnN Ey)
N——

since disjoint

Claim 7:If £y, E», ... € M,,, then Ufil E; € M,,. If they are disjoint, then
% (U Ez) = ZM(Ez‘)
i=1 i=1

First, let E1, E», ... € M. Use the trick of setting equal disjoint unions, where UF; =
UE;. Namely, F1 = B, F, = E, \ (F1 U---U F,_;). By previous claims, we have
established that such F; € M,,. Also since F; C E;Vi, F; are all disjoint as well.

Define also S; := UleFi € My, S, € E. Toshow £ € M,, fix A C X. Then,
Sk € Mu —

p(A) = p(ANSg)  +pu(A\ Sk)
————

Claim 6,=ANUY_, F;
k
> WANF)+ p(A\E)

=1

Then, let £ — oo and using subadditivity,

w(A) > w(ANE) + u(A\ E) (*)
=1

>p||JANF | +m(A\ E)
i=1
=ANU F;
— WANE) + u(A\ E)

L EeM,



Notice thatby (x) with A = E, itgives u(E) > Y22 u(E N Fy)+u(E\ E) = >, p(F).
M~ Y—=—
If E4, Es, ... disjoint, then E; = F;. [

The following presents a useful way to construct outer measure.
Lemma. Suppose S C P(X),0 € S.Leth : S — [0, 00] be a function with h(0) = 0.
For A C X, define

mf{Zh )i AC USZ,S es}
=1

Then, such y is an outer measure. (By convention, inf ¢ = oo, meaning p(A) = oo if A
Sist. A C US;.)

2.3 Lebesgue Measure

Let X = R% Let S = {R = I; x --- x I, rectangles with sides parallel to axis}. If
R = H?Zl[ai, b;], define h(R) = vol(R) = Hle(bi — a;). Then, ;1 given by the lemma
above is the Lebesgue Outer Measure, defined on P(Rd). In particular, we denote
u(A) = [A.

Using the result from last time, Jo-algebra M . = LEB(R?) called the Lebesgue
measurable sets, where |U A;| = > |A;| whenever A; € LEB(RY), A;NA; = 0,Vi # j.

Note that LEB(R?) # P(R?). See appendix for details.

2.4 Convergence Results for Measures
Theorem. Let (X, F, ;) be a measure space.
1. If Ay € Fand A; C Ay C ..., then p (U2 A4;) = lim; o0 p1(A;).
2. LetA; € F, A1 D Ay D -+ AND p(4;) < oo, then (N2 A;) = limy_o0 pu(A4).

Proof (1). Let Ag = 0, then U2, A; = U2, (A4; \ Ai—1) since they are disjoint union of
elements of F, and so

UA;) = (A \ Aiq)
=1

= lim Zu i\ Aic1)

N—oo

N
(o)

— Jim ()

N—oo



Proof (2). Define A; \ A; =: B;.

p(NZ14:) = p(Ar) — p <A1 N Ai)
i=1

= p(Ar) — lim p(B;)
Jj—o0

N——
=pu(A1)=p(A;)
— lim p(4))
Jj—ro0

Briefly about Concrete Measures. We usually say something holds ; — a.e. (almost ev-
erywhere) if N € F s.t. pu(N) = 0, and the property bolds in X \ N. For instance,
f(z) < oo a.e. w.r.tlebesgue measure, if [{ f(z) = co}| = 0.

Abstractly, there could be a problem. Even if N € F,u(N) = 0, there can exists
N’ C N such that N’ ¢ F. We say (X, F, 1) is complete if the above cannot happen.
In general, we can always complete any measure space.

Notation: N :={N € F: u(N) = 0}. NV := {N' € X : N € N such that N' C N}.
So, it is complete <= N = N".

Lemma. Suppose (X, F, i1) is a measure space. Then
F={FUN :FeF N eN}

is a o-algebra, and 3! complete measure space (X, F, ji) such that ji(F) = u(F),VF €
F. Notice that also the ;1 outer measusre (X, M, 1| a1, ) is complete.

Proof. First we show that F is really a o-algebra. Clearly, § € F. Notice

O(F1UN{)=GFiUON{,and UNi’C UNi
i=1 =1 =1 e d
\E}J €F, and p(UN;) <3 p(N;)=0

UFUN)) € F.
Finally, if F U N’ € F, then X \ (F U N'). In particular,

X\(FUN)=[X\(FUN)UIN\ (N UF)] e F

eF CN

Hence, F is a o-algebra.



Then, for F U N’ € F and define i(F U N) := u(F).

A natural question arises: Well-defined? (if F1 U N| = F> U N}, is u(F1) = p(Fy)).
Indeed, F; C Fi U N{ =FKhU Né CFHhUN, — ,LL(F1) < M(FQ) + M(NQ) = ,LL(FQ), and
reverse to reach equality.

2.5 Borel Algebra
Definition. I' C P(X), then

o) = ﬂ{]—"a — algebra, F O I'}

is the o-algebra generated by I', the “smallest o-algebra containing I'”

If X is a topological space, i.e., open sets make sense in X, then the Borel Algbera is

BOR(X) :=oc{AllopenV C X}

For instance, recall LEB(R?). We can prove V C R? open = V € LEB(R?). This
implies that
BOR(RY) ¢ LEB(RY)

Actually, BOR(RY) ¢ LEB(RY). In addition, (R%, BOR(R?),my) is not a complete
space, while (RY, LEB(R?), m) is complete.
Example. In R, half open and closed intervals are closed, since

[a,b) = D[a, b—1/i] € BOR(R)
=1



3 Measurable Functions

Definition. The extended reals are defined as R := R U {#00}. Let (X, F,pu) be a
measure space.

Definition. A function f : X — R is measurable (F)-measurable if
fl~00,a) ={z € X; f(z) <a} € F, YVa€R

In particular, this definition automatically allows for more complicated preimages to
be measurable, such as {f(z) = a},{f > a},{f > a},{f < a}. Infact, f7!B €
F,VB € BOR(R).

Lemma. Let f : X — Rand
Iy={McCR:f'McF}
Then, I'y is a o-algebra.

Proof. MeT; = f'MecF = f'R\M)=X\f"'McF.
Similarly, let My, My, ... e 'y = ffuM, =uf—‘M; e F [ |

Being measurable means the o-algebra o, contains all intervals [—o0, a)

Corollary. If f: X — R is measurable, then BOR(R) C I'y, ie, f 1B e F. VB €
BOR(R), also f~'{#+o00} € F

Proof. First, to prove BOR(R) C I'y, it is enough to prove V C R? open = V € T;.

(Lemma 6.1, later in the course).

Every open V' C R is a (disjoint), countable union of half-open intervals [a,b). So,
[a,b) € I't is enough.

Indeed, [—00,a) € 'y, and [a,b) = [a,00] N [-00,b) € 'y [ ]
Example. Let f,g: X — Rbe measurable. {x € X : f(z) =g(x)} ={x: f—g=0} =
(f — g)~{0}. So, this is measurable if f — g is.

Remark: Compositions are the only operation where we need to be a bit careful with
measurability. Suppose, for example, f : R — R is borel measurable (i.e. f~(B) €
Boreal, VB € BOR(R))and g : X — R is measurable. Then, (fog) !B =g~ (f }(B))

N——

€BOR(R)
VB € BOR(R) = f o gis F-measurable.

Proposition. Let f,g : X — R be real-valued measurable functions, and « € R. Then
af, f+g, fg, f/g are measurable, assuming g # 0 for f/g.

Proof. 1. af is trivial.

10



2. For f+g,notice that {f +g < a} =, ,cqqir<al{f <@} N{g <r}|isin F, since
is a countable union of elements in F.

3. For fg, notice first that f2 is measurble. Then we can use fg = [(f + ¢g)? — f? —

g°1/2.
4. flg=1f-1/g.
|
Proposition. Let f : X — R measurable =—> |f|P is measurable Vp > 0.
Proof. |f|P = ¢o f,¢(z) := |z|P. here, ¢ : R — R is Bor(R) measurable since {¢ < a} =
¢~ [—00,a) is open (consider continuity.) Apply the composition remark. |

Most critical for modern analysis: various limits of measurable functions are still measurable.

Lemma. if f; : X — R is measurable, then sup; fj,inf; fj,limsup; f;, liminf; f; are
measurable.

Recall that for scalars ay, ..., limsup a; = limy_o SUp;>, a; = infy sup;>4 a;
Proof. Note: this applied for all a usually implies intersection.
[e.o]
{supfj <a}=({fi<a}eF
: -

Note that the inequality above only holds for <, not <.

And also inf; f; = —sup;(—f;) € F. Thus limsup;_, ., f; = inf;sup;> ; f;. |
Corollary. If f; — f pointwise and each f; is measurable, then f is measurable.
Proof. f =lim; f; = liminf f; is measurable. |

Lemma. Suppose (X, F, ) is a complete measure space, f : X — R measurable and
g(x) = f(x) for p-a.e. X. Then, g is measurable.

Proof. Let N € F such that u(N) = 0 and f(z) = g(z)Vz € X \ N. Now, {g < a} =
{re X\ N;f(x) <a}U{ r€eN:g(x)<a } e F. [ ]

€F by completeness as a subset of N

Remark. Sometimes this is expresses as a class of equivalence functions [f] = {g: g =
fip— ae.}.

11



3.1 Simple Functions

Definition. A simple function is a measurable function s : X — R that takes only
finitely many values.

Note. For this class we use 1 to denote the indicator that equals 1 if z € E, and 0
otherwise.

A function of the following form is simple:

N
ZcileEi S .7:, Cly...,Cn € R
i=1

A simple function can be written in many ways like above, like 0 = 1 — 1g. There

is a particular caonical representation, however. Let s be simple, and cy, ..., ¢, be its
distinct values. Define

Ei=sYe}={recX:sx)=¢}cF
Then, X = UE; is a disjoint union and s = 3. | ¢;1p,.

Example. For s = 1(919) + 5[0,100), the canonical representation is s = 2 - 1 19) + 1 -
L110,100] T 0 - Lotherwise-

The following is key for this canonical representation:

Lemma. Let f: X — R be a measurable function and non-negative, f > 0. There 3

simple s; s5.t. 0 < s(z) < sj41(x) < f(z), and f(z) = limj_, sj(z)Vz € X.

Proof. Define

0, 0<fx)<!
172, 1/2< f(z) <1
s1(x) = {(1) ;é)ffi S n@=11 1< f@) <32
’ - 3/2, 3/2< f(xr) <2
2, flz) >2

This is clearly measurable since we have finite unions of preimages of half-closed
intervals and f~1[j, o0].

By construction, they are increasing and less than f.

Convergence: If f(z) = oo, then s;(z) = j — 0o, as j — oo. If f(z) < oo, then for all
big enough j, we have f(z) — 277 < sj(z) < f(z). So, f(z) = limj_00 5j(2). [ |

12



4 Integration Against a General Measure

4.1 Integral of non-negative simple function.

Definition.  Suppose s is simple and non-negative, written in its standard form
ZZJ\L 1 ¢ilg,. Then, the pi-integral is defined as

/Xsd,u,— /Xs(ac)d,u(x) —/sdu = gczH(EZ)

Remark.

1. Later, we see s = Y c;ly, = [sdu = > ¢;u(E;) even if not the canonical
representation.

2. Notice p(E;) = oo is possible. In that case, we simply define ¢; - oo = {0, if ¢; =
0; oo, otherwise}.

Definition. If £ € 7' and s > 0 is simple, define

/sd,u::/ lgpsdu
E X

Lemma. Lets,u > 0 be simple with [ sdu, [ udu < co. Let a € R such that squ > 0.

Then,
/(s—l—au)du:/sdu+a/udu

Remark. If & > 0, no need to assume [ sdu, [udu < co.

Proof. Let us write the cannoical representations

1 J
SZZbilBi u:Zlecj
i=1 Jj=1

Let dy, ...,dx be enumeration of the set {b; + ac; : ¢ = 1,...,1,5 = 1,...,J}. Given
ke{l,.., K}, let
Fi = {(Z,]), b; + ac; = dk}

Now, a cannonical represention is

K
s—l—au:Zdlek,Dk:Z U (BiNCj) =
k=1

(GDEFk  disjoint

13



K K
/(8 +ou)dp =Y dpp(Dp) =Y dp Y p(BiNCy)
k=1 k=1 (i,j)EF
K
= Z (b + OéCj) (BZ N C]) (*)
k=1 (i,j)€F)

~

2264—040J (BinCy)

15=1

7
J

J I
bi Y w(BiNCy)+ Z Z (BN C})

J]=

I
MN

)

Il
—
—

where (x) follows from the addivity of u where we brough dj, inside the summation.
Also, we have

J

J
> wBiNC) = UBﬂC pBin|JCy) =
j=1

j=1

and similarly for C.

[

Lemma. If s,u are simple functions and 0 < s < u, then

/ sdu < / udp (Integration Monotonicity)
Proof.
Og/(u—s) du:/udu—/sd,u
——
>0
WLOG, [ udp < oo, and thus it follows that also [ s dy is finite. [ |

Lemma. [Independence of Represention] Let s = Zf\i 1 ¢ilgi be not necessarily the
canonical representation, with ¢; € [0, 00) and E; measurable. Then,

N
/8 dp =Y cip(E
=1

Proof. fsdu = Zfil ciflEi du, where flEidu = u(E;). [ |

14



Remark. Suppose we are integrating a simple function over a measurable A C X. Let
0<s= Zivzl ¢ilp, simple.

N

/A d,u = /I[Asdu /ZCZ]IA]IE dp = /ZCZ]IAQE du lem—maZcZu(E NA)

i=1
In particular, if u(A) =0, [, s dp.

Theorem. Fix a simple function s > 0. Then the function

Ab—>/sdu
A

from p-measurable sets to [0, oo] is a measure.

Proof. u(0) =0 = [;sdp=0.

This must have also satisfy countable additivity: Let A;, As,... be measurable and
pairwise disjoint. We must show that [, sdu =377, [, sdp.

Let s = Ef\;l ¢ilg,. Then

/sd,u
A

i u(EiNA)

'MZ

N
I
—

¢ Yy wE;NAj) (1 countably additive)
7j=1

N
ZZ,uEﬁA

/ sdu
A.

I
Mz

s
Il
—

ANER M8

j=1"4
|
Corollary. Let £y C E5 C --- be measruable sets and s > 0 simple. Then,
/ sdp = lim sdp.
UE; j—=oo JE;
Proof. Apply convergence results to the measure v(A) := [, sdu n

15



4.2 Integration of Non-negative Measurable Functions

Definition. Let f > 0 be a measurable function.

/f du ::sup{/sdu;ogsgfsimple}

Remark. Notice that via this definition, this is a non-empty set since the zero function
exists. Also by monotonicity of integration of simple functions, when 0 < f < g, the
sets {s: 0 < s < f,ssimple} C {s:0<s <g,ssimple} sothat [ fdu < [gdu.

The key in lebesgue integration is its behavior under limits.

Theorem. [Monotone Convergence Theorem].

Suppose f; are measurableand 0 < f; < fo < ---. Let f(z) = limj_ fj(x). This limit
exists because of increasing sequence, and automatically measurable, since we prove
limit of measurable functions is measurable. Then,

/hm fidp = /fdu = lim /fjdu

Jj—00 Jj—00

Proof. B = limj_,«, [ f;j dp exists since the integral is increasing by monotonicity. Set
A := [ fdu, which is fine since f measurable. We want to claim that A = B.

Clearly, A > Bssince f; < fVj = [ fidu < [ fdp.

For B > A, it suffices to prove that V6 € (0,1),B > 6A : Let 0 < s < f be simple
function, and we prove ¢ [ sdu < B, since taking supremum over s yields 64 < B.

Consider sets Ej := {0s < f;}. Notice that F; increasing since f; < fj41. Also | E; =
X: fixx € X. If s(x) = 0, then ds(x) = 0, then ds(x) = 0 < fi(x) = =z € Ej.
Otherwiseif s(x) > 0, s(x) < f(z) by definition of f,so ds(z) < f(x). As fj(z) — f(x),
we must have f;(z) > ds(z) for some j, so z € Ej;. This proves that | J F; = X.

Thus applying corollary above,

) / sdp ‘=" lim [ Ssdu= lim [ Igdsdp < lim / L, f; dp
J—00 E; J—00 J—00 .
< lim / fijdp=1B (monotonicity)
J—00
|

Lemma. Let f,g > 0 be measurable and oo > 0. Then,

/(f+ag)dﬂz/fdu+a/gd,u

16



Proof. Recall from previous lemma we can always have simple function sequences
sj — f,u; — g. By linearity of integral for simple functions,

s1+au; <sstauy <---< f+ag

So that [ (s; + au;) du — [(f + ag) dp by MCT. [ |

Lemma. Let f; > 0 be measurable. Then

/ijdu:z:/fjdﬂ
o j=1
Proof. Define gy := Z;-V:l i
> B . MCT .

/;f]du—/]vlgnoo = A}gnoo/gjvdu

N
= Jm 3 [ s

7j=1

=Y [
=1

|
Lemma. Let f > 0 be measurable, then for A € F
A / fdu
A
is a measure.
Proof. See HW3. Consider the lemma. |
Theorem. [Fatou’s]. Let f; > 0 be a sequence of measurable functions. Then,
/liminf fidp < liminf/fj du

Jj—o0 j—oo

Proof. Recall that lim inf always holds for measurable f;. |

17



Proof.

:=gj,increasing

.. def . z N
/hmmf [i = / lim 12£ fi du
j=

j—o0 k—o0

MCT .. .
= 1 ff:d
Jm [ ik fi du
——
<fx

— liminf [ inf f; d

mint [ inf £, dy
——
<fx

< lim inf/fk dp
k—o0

Useful Properties.
1. If f>0and [ fdu =0, then f =0 p-a.e.
2. If f =g p-ae., then [ fdu= [gdp.
3. Let f > 0 be measruable with [ fdu < oo and f(z) < oo, then, f(z) < co p-a.e.

Proof. (1). Notice that {f > 0} = U2, {f > %} If u({f > 0}) > 0, then 35 where
w({f >1/43}) > 0. By contradiction, we have

1 1 .
Oz/fduz/ fduz/ —dp=-p{f>1/j})>0
{r>1/} (r>1/3} J J

(2). Follows as [, f dp = 0if u(A) = 0.
(3). We need p({f = o}) = 0. Indeed,

N 1 1
M({fzoo})SM({fZJ})—j/l{f>g}dM§ ./{Kj}fduéj/fdu—w

J
[
Remark. Often to show something is finite/ 0, we can show its integral is finite /0.
4.3 The Integral of a General Measureable Function.
Notice that if f : X — R, we can write f, f~ > 0 measurable where
_ 1 _ . 1
f:=f"—f", wheref™ := max(f,0) = i(lf\ + f), f~ == —min(f,0) = §(|f| -

18



Thus, we can define

[ran= [ 1 an [ £ au

Note that problem can arise when they are both co. Therefore, we will make this
defintiion for the so-called integrable functions (L' (1)) - those that satisfy

[istau<oe = [rran [ dn<o
Caution: When using [ f dp, it is crucial to check the property above.
Remark.
1. f integrable on E means that 15 f is L!(1).
2. If f is integrable,

[rant=1 [t an= 5 < [ [ 5

= [t s yau= [ 1f1d

Proposition. If f,g: X — R is integrable and « € R, then f + ag € L*(u) and

/(f+ag)dﬂz/fdu+a/gdu

Proof. Define h := f + ag. We have

[z [(s1+alglydu= [ 171dn+a [ lgldn < oo

Also we let o > 0 first. Then

ht—h"=h=f+ag
=ft—f +agt —ag”
= h "+ f +ag  =h +f"+ag"

— /h++f+agdu:/h+f++ag+du
— /h+du+/f_+a/f_du_
Rearrange and get the desired result. Similar follows for oo < 0. [ |

Note that monotonicity also holds for f < g = [ fdu < [ gdp. We have that

[oau=[tau+ [o-pan=

Lemma. Let £ be measurable and disjoint sets, and E := | .2, E;.
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1. If f is integrable over E, then f is also integrable on F;Vj, and

/Efduziio;/;jfdu

2. Conversely, if f is integrable over E; Vj AND 2, [ E; |fldp < oo, then f is

integrable over F, and
fdp= / fdu

Proof. Exercise. [

Theorem. [Dominated Convergence Theorem].
Let f; : X — R be measruable with |f;| < g, u-a.e, for some g € L!(p). Assume also
fj(x) = f(x) p-a.e. Then, f, f; integrable, and

18- ldn—0
In particular,
lim /fjdpc: / lim f;dp = /fdu
j—oo j—o0

Proof. Notice that the set

(e.)
N := {f; doesn’t converge to f} U U{\f]\ > g}

j=1
satisfies |[N| = 0, and |f;| < gVjin X \ N and |f| = lim; o |fj] < gin X \ N. By
modifying functions in a set of measure zero, WLOG |f;| < g, f; — f everywhere.
Now, the main idea of the proof is to use Fatou, so somehow we want non-negative
functions. Notice that |f — f;| < |f| + |fj| < 2¢9. So, h; :== 29 — |f — f;| > 0. Also
hj — 2g pointwise. So,

/diu— /limhj du

< lim inf / hjdu (Fatou)
= lim inf </2gdu—/\f—fj|du>
= /29 dp 4 lim inf <— / |f — fil du) (Think Carefully)

:/diu+limsup </\f—fj|d,u> = limsup/|f—fj|du§0
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Since

0 < timint [ 17~ sl dp < timsup [ 17 = 51 dp <0

Jlim [ |f — f;| du = 0. Then also,

[ sydn= [ rau =1 [t - naul < [15;- ldu o0

Example. Suppose ¢; : X — R measurable with )" [ |¢;| du < co. Then

[l dn<oc = eyl < cae.

Soif £ :={> |pj| = co}. Then, u(E) = 0 and f(z) := ) ¢;(z) converges absolutely
on X\ E.Say, f =0on E. Wewant [ fdu=73 [ ¢ dpu.

To apply DCT, set f;(z) := 3>7_, pi(z). Then, fj(z) — f(z) ae. .

= lim/fj du (DCT)
Jlggo Z / ;i dp = Z / i du (linearity)

In particular for DCT, we have

fi@) =1 wil) Z \<Z|<pz =g
i=1 =

.

So g integrable, [ gdu =Y [|¢i| du < co by assumption. So, DCT is ok.

4.4 Absolute Continuity of the Measures

Definition. Let 11, v be measures on the same measruable space (X,I'). We say v is
absolute continuous w.r.t. 4, denoted v << p, if u(A) =0 = v(A) =0, AeT.

Stereotypical Example. Suppose 1 is given and f > 0 fixed. v(A) := [, fdu. Then,
v << U

Lemma. Suppose p, v are measures on (X,I') and v(X) < oco. Then v << p if and
only if Ve > 0,30 > 0 such that u(A) < ¢ implies v(A) < e.
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Proof. The <= direction is trivial. For =, assume v << p. Suppose by contradiction
that 3= > 0 and sets E1, Es, ... such that v(E;) < 27! but v(E;) > ¢. Define

Ak = GEZ’ A= GAk
=1 k=1

u(A) =0, since Vk we have

o0 oo
w(A) < p(Ap) <D p(E) <) 27~k
i=k

i=k

Note that we can A < B if A < ¢B for some not importantc. A~ Bif A S B < A. So,
n(A) = 0.

[add small parts afterwards] |

Corollary. In (X,T,p), suppose f : X — R is integrable. Then, Ve > 0, 30 >
0such that u(A) <d = [, |fldu <e.

4.5 Topology Review
Definition. A topology space is (X,7) where
1. T is closed under arbitrary unions
2. T closed under finite intersections
3. X, 0eT
Definition. [Not done yet from previous lecture]

Definition. A set K C X is compact if every open cover has a finite subcover. If
K c U, Va, Va C X open, then Ja, ..., oy, such that K C |J, V;. In particular, note
the following results:

. If F C K, F closed, K compact = F compact.
. If X Hausdorff, K C X compact = K closed.

1
2
3. f: X =Y for X,Y topological spaces, then K C X = fK C Y compact.
4. K U Ky compact if K; compact.

5

. If X Hausdorff, K, K C X compact and K; N K3 = () = 3 neighborhood U;
of K; such that Uy N U, = 0.

6. If X Hausdorff and there is a decreasing sequence K1 C K5 C ... compact, then
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Definition. We say (X, 1) is a locally compact if Vo € X, 3 neighborhood U of X
such that U is compact.

Theorem. Let X be locally compact Hausdorff (LCH). If K C X compact and U is a
neighborhood of K, 3 a neighborhood V' of K such that

V C U is compact

Example. [Urysohn] Suppose there is compact K and open U with K C U. We want
to make a compactly supported continuous function f ~ 1;. So, pick neighborhood
V of K such that K C V C V C U, where V compact. Thus we can write

dist(xz,V°)

J(w) = dist(xz, K) + dist(z,V°)

where x — dist(x, A) is continuous and lipschitz: |d(x, A) — d(y, A)| < |z — y|. Here,
f=1on K, is continuous, in [0, 1], and f = 0 on V*. So, f supported on V C U.

5 Riesz Representation Theorem
5.1 Topological Preliminaries
Definition. Let X be LCH. Then, we denote
Ce(X) ={f: X — R;continuous and spt(f) compact},
where the support is defined as
spt(f) = {w € X : f(2) £ 0}
Also,let K,U C X, f : X — R. We denote

e C.(X
f € CelX) éo erf)
K < f <= {Kcompact ,andf<U <= p
0<f<1
I, <f<1
spt(f) U

The Urysohn function f from example above satisfies K < f < U.

Theorem. [Urysohn’s Lemma.] Let X be LCH, K C U, K compact, and U open.
Then, 3f such that
K<f=<U

Proof. Define ¢; = 0,¢2 = 1, and enumerate (0,1) N Q = {g3, q4, ...}. Using theorem
mentionted previously twice, 3Vj, V; such that Vo, Vi compact and

KcvicVicVycVocCU
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By induction, suppose n > 2 and we have already chosen V,,,V,,, ..., V4, such that
¢ < qg = Vg C Vg andV,, compact Vk. Now, we need to construct V. Let
4,9, 4,J € {1,...,n} be the largest and smallest numbers such that ¢; < g,+1 < g;.
Using the previous theorem again, 3V, compact and

open such that V,

1+1 n+1

Vi € Vausr € Viauir C Vo,

n+1 dn+1

Proceeding by induction, by found collection of open sets indexed with ¢ such that
K c V1,Vy C U, each V, compact, and ¢ > r implies V,, C V,. For each ¢ € QN [0, 1],
we define f, = ¢ - 1y,.

Here, it is non-trivial that f is continuous. As Vj, is open, {f, > a} is open Vo € R. So,
fq is lower semicontinuous.

Also, 0 < f(z) < 1. Vo € K,1 > f(x) > fi(x) = Iy, (z) = 1. Also, f(z) = 0if x ¢ V.
So, spt(f) € Vp C U compact.

For upper semicontinuity, define g, = 1y~ + rl X\ [ = inf, g4. Similarly for f, g is
upper semi-continuous. Remains to show that f = g. First, f,(x) > g,(z) only possible
ifreVy,g>randae ¢V, butg>r = V,CV,,so f(z) <g(x).

Also assume f(z) < g(x). Pick rationals ¢, r such that f(z) < r < ¢ < g(z). But now
f(@)<r = z¢V,. Also,g(z) >¢g = ¢ X\V,But,g>r = V,CV,.. 1

Theorem. Let X be LCH, V1,...,V,, C X open,and K C V; U ---UV,, compact.Then,
dh; < V;,i=1,...,nsuchthatl; <hy+---+h, <1.

Proof. If z € K, Ji(xz) = i such that € V; implies by theorem 1.15, 3 neighborhood
W, of x such that W, C Vi = V() is compact. Notice K C |J,cx Wo = by com-
pactness, 3a1, ..., 2, € K such that K C Jj2, W,,. Then, set H; = W, CV,,
so H; compact.

Jri(z)=1

Apply Urysohn’s to H; C V;, so dg; such that H; < ¢; < V;. Wewant hy + --- + h,, =
1 -l (1 — ¢;). In fact, we can use

k—1
hy = (H(l — gl)> Jks ke{l,..,n}

i=1
Clearly, hy, < Vi. Now, wehave hy +ha = g1 + (1 —g1)g2 =1 — (1 — g1)(1 — ¢2) and
proceed by induction. Now Ay +---h, =1on K,since K C HiU---UHyand ¢g; =1
on H;. |
5.2 Standard Version of Riesz Representation Theorem

For this discussion, (X, F, ;1) is a measure space such that X is LCH. Asuume M is
Borel, i.e., Bor(X) C F. Assume also that y is locally finite: p(K) < oo,V compact
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K C X. Then, f is F-measurable as {f > a} = f~!(—o0, @) is open by continuity, so
itis in Bor(X) C F.

Also, f is integrable as f supported means

[isida= [ 1] du sl < 0
spt(f) \<’1"

where K := spt(f). So, we can form A : C.(X — R),

/fdM

Trivially, A is linear, as A(a; fi + aaf2) = aaAfi + asAfo. Also, f >0 = Af >0,
which we call A a “positive linear functional” in C.(X).

In particular, Riesz Representation theorem is the converse: all positive linear func-
tionals look like this.

Theorem. [Riesz Representation Theorem.] Suppose X is LCHand A : C.(X) — R
is an arbitary positive linear functional where

1. A(Ozlfl + Otgfg) = OélA(fl) + OéQA(fQ) if f1, fQ S CC<X) and at, a9 € R,
2. Af > 0if f € Co(X) and f > 0.

Then, there exists a o-algebra F D Bor(X) and a unique measure u : F — [0, 0o such
that (X, F, i) is complete, and

=/ﬁ%f€Q@3

where 1 also satisfies the following properties:
1. plocally finite; p(K) < oo, V compact K C X.
2. pis outer regular. u(F) = inf{u(V): E C V,V open}, VE € F
3. pis inner regular for some sets: (E) = sup{u(K) : K C E, K compact}, V open
E,and VE € F with u(F) < co.

Proof. Uniqueness. Suppose p1, p2 @ F — [0, 00] satisfies the three previous results
and Af = [ fdu,f € Co(X). First, i1 (K) = po(K). If K C X compact, use (2)
to u2 so that for ¢ > 0,3U D K open such that p2(U) < pa(K) + . By Urysohn,
3f suchthat K < f < U.So, pu1(K) = [T dps < [ fdp =Af = [ fdps < po(K)+e.
Ase — 0, 1 (K) < po(K). By symmetry, p1(K) = p2(K). Apply (3) to any open set
U, so that p1(U) = pa(U). By (2), u1(E) = p2(E) VE € F..

Construction of ;.. Define for open sets U C X that
p(U) =sup{Af: f<U}
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For E C X, define p(E) = inf{u(U) : E C U,U open}. Now, think of why the two
definitions agree if £ = U open.

it is an outer measure. Monotonicity is at least clear. For subadditivity, we want
to prove u(Uy U Usz) < u(Ur) + p(Us). If Uy, Uy C open, let f < Uy U Us. We need
Af < p(Ur) + p(Usz). Now let K := spt f. As K compact and K C U; U Uy, 3 partition
of unity with hy < Uy, ho < Uz with hy + hy =1 on K. So on K, we can write

f=f-Ig=f(hi+h2)= fh1 + fhe
<Uz <Us

So, Af = A(fh1) + A(fhe) < u(Ur) + p(Uz2), and thus p(Uy U Uz2) < p(Ur) + p(Usz).
Now, let A;, Ag,... C X be arbitrary with p(4;) = inf{u(U) : U DO Aopen}. Let
e > 0, Vi choose open Uy D A; such that u(U;) < pu(A;) +¢/2% Set U = |J;2, Ui, A =
U2, A; such that A C U, so u(A) < p(U). We need that p(U) < >, pu(Ai).

Here U is a countable, not finite union of open sets. Recall U open, so ;(U) = sup{Af :

f<U}and fix f < U. Let K := spt f, then spt f C U = [J;2, U;. By compactness, 3n
suchthat K CU;U---UU,.So f < Uy U---UU,. So by definition,

Af < p(UyU---Uly)

So, we have the u(U) < 372, u(A4;) +e.

Finally, for p(0) = 0, we will soon prove that u(K) = inf{Af : K < f}V compact
K C X. In particular, with K = (), we have u(0) = inf{Af : 0 < f} <A0O=0asAis
linear. So, p is an outer measure.

Behavior of 1« on compact sets. First, we prove p(K) < inf{Af : K < f}. Fix f
with K < f, and we with u(K) < Af. For § € (0,1), define Us := {f > J}. Notice
that f = 1 > 0 on K, so K C Us. Then pu(K) < u(Us) = sup{Ag : g < Us}. As
Us open, fix g < Us. So, g < Iy; < %. Notice here there positivity of A means
g1 < go = Ag1 < Ags for g1, g2 € Co(X). So, we have that Ag < A (g) = 1Af. Now
letd — 1,s0 u(K) < Af as desired.

For the converse inequality, we want to show inf{Af : K < f} < u(K). So, we need
to produce an f so that Af < u(K) + ¢,Ve. We choose an open U O K such that
u(U) < p(K) + ¢, which can be found by definition of x(K) with infimum. So by
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Urysohn, 3f with K < f < U, so by definition Af < ;(U) < u(K) + e. Thus, We have
that

w(K) =inf{Af: K < f}
Notice that (K) < oo follows from above, so  locally finite.

Finite additivity. We seek to prove for disjoint compact K; that
n
pEL U UK,) =) p(K;)
i=1

Since subadditivity is already proved, we only need to consider the converse, p(K; U
Kjy) > u(Ky) + p(Ks). By above, u(Kq U Ky) = inf{Ag : K1 UKy < g}. Fixe > 0 and
choose g such that K1 U Ko < g and Ag < p(K; U Ka) + . We will find f such that
Ky < fg,Ko < (1—f)g. Once I have that, then pu(K1)+u(K2) < A(fg)+A((1—f)g) =
Ag < u(K1UKy) +e.

It only remains to find such f. Since X LCH, 3U D K; such that U N Ky = . Apply
Urysohn to K C U, so 3f such that K < f < U. In particular, f =1on K; and f =0
on K, so the above is satisfied.

Auxiliary Collection 7). We begin by building the corresponding o—algebra F.
Define

Fo:={F CX:pu(F)<oo}and u(E) =sup{u(K) : K C E compact}

Clearly, (1) Fy contains compact sets as p(K) < oco. (2) p(U) = sup{p(K) : K C
U compact} if U open. In particular, {U open; u(U) < oo} C Fy. So fix U open. Using
u(U) = sup{Af : f < U}, choose f with f < U and Af > «, where « can be any
number satisfying a < p(U).

Write K := spt f C U. We prove that Af < p(K) as this implies @ < Af < p(K).
Suppose V' O K is open. Then, f < V. Af < pu(V) = Af < inf{u(V):V D
K open} = ju(K)

Countable Additivity in F;. Let A;, As,... € F be disjoint. We prove that p(A) =
ooy u(Aq), A =2, A;. By subadditivity, it suffices to show p(A4) > >, u(A;). Let
e > 0, choose K; C A; such that u(A;) < u(K;) +¢/2'. (Notice K; still disjoint since
we approximate from inside.) For all n the following holds:

W(A) Z p(KrU--- U Ky)
=Y (K
=1

> ) =Y ef2 = u(Ai) —e
=1 =1

=1

Letn — ocoand e — 0,50 u(A) > 372, u(A;). So additivity holds.
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For later use, notice that this also gives “Fact 3 about F”, where for Ay, Ay, ... € Fy, A =
UA;, p(A) < oo = A€ Fo.

Regularity of A € ). If A € Fyand e > 0,3 compact K C A and open U D
Asuch that u(U \ K) < e.

First, choose open U D A such that p(U) < p(A) + €/2 (using outer measure). Then,
choose compact K C A such that u(A) < u(K) + /2 (using inner measure which
holds in Fy.)

We want to know U \ K € Fy. Itisopenas U \ K = U N K where K closed. Also,
uw(U\ K) < u(U) < oc. So fact 2 about Fy = U \ K € Fy. Now, pu(K)+ u(U\ K) =
wU) < p(A)+¢/2 < p(K)+¢,as K,U \ K € Fyand by disjoint additivity in . So,
p(U\K) <e.

Fo is closed under finite unions, finite intersections, and set differences. Suppose
we have A;, A € Fy, and we want A; \ Az € Fy. This uses the previous step.

Let ¢ > 0. There 3K; C A; compact, and 3U; D A; open such that u(U; \ K;) < € as
shown above. The goal is to approximate A; \ Az with a compact set. Turns out we
can do K \ U, which is a subset of A; \ A, also compact as closed subset of compact
K. In particular,

Al\AQ C Ul\K2
C (Ul \Kl) U (Kl\KQ)
C (Ul \Kl) U (Kl \ Ug) U (UQ\KQ)

So,as (U \ K1), (Uz \ K3) can become arbitrarily small, p1(A; \ A2) < 2e + p(K; \ Ua),
and thus A4, \ 4y € Fo.

Now, A1 U Ay = (A1 \ A2) U Ay, a disjoint union of elements in F with p(A; U Ag) <
H(Al) + ;L(AQ) < 0. By fact3, A1 U Ay € Fy.

Also, A1 N Ay = Ay \(Al \Ag) e Fo.
M~ N——
€Fo €Fy

Definition of 7. We can define
F={ECX:ENK € FyVcompact K C X}

We claim that F is a o-algebra.
1. X € Fsince XN K = K € Fo Vcompact K.
2. Let Ae F,K compact. (X \ A)NK =K\ (ANK) € Fy. Therefore X \ A € F.

3. Ay, Ag,... € F. Let A := UA; and K compact. Set B; :== A; N K,..B,, = (A, N
K)\(B1U---UBy;—1),n > 2. Now ANK = |J;2, Bj where (B;) disjoint, B; € Fy.
And p(ANK) < u(K) <o = ANK € Fy by fact 3.
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So, F is a o-algebra.

Showing Bor(X) C F. Follows if F' € FV closed F C X. However, this is trivial as
FNK e FyVcompact K C X,as F'N K closed and C K, so compact.

We claim that 7y = {A € F;u(A) < oo}. Indeed, if A € F, then u(A) < oo by
definition of 7y and AN K € FyV compact K C X. So Fop C {A € F : u(4) <
oo}. Proof of converse: Let A € F with u(A) < co. Need ¢ > 0, 3 compact K C
A such that u(A) < u(K) +e.

Choose any open U D A with p(U) < co. We know U € Fy, and by fact 2, 3 compact
H C U such that u(U \ H) < ¢/2. By definition of 7, H N A € Fy, so 3 compact
K c Hn Asuchthat u(ANH) < u(K) + ¢/2. Thus

w(A) < p(ANH) + p(A\ H)
<uK)+e/24+¢/2
< u(K)+e

So, A € Fy. So we have Fy = {A € F: u(A) < oo}

Additivity of 7. Let A;, Ay,... € F disjoint, A := UA;. We want p(A) = > u(4;).
This is trivial if (A;) = oo for some i (as A; C A.) WLOG, p(A4;) < ooVi = A; € Fo.
But additivity works in Fj.

Completeness. Let N € F with y(N) =0and A C N, weneed A € F. Fix a compact
K.Here y(ANK)=0,and so u(ANK) =sup{u(K’) : K’ ¢ AN K, K' compact} =0
trivially. So, AN K € Fy.

Identity. We want to show Af = [ fdpu. It is enough to show Af < [ fdp, since if
true, thenalso —Af = A(—f) < [(=f)du=— [ fdu = Af > [ fdp.

Thus to show Af < [ fdu,Vf € Ce(X), we fix f € Cc(X), let [a, b] be an interval con-
taining the image of f. Fixe > 0. Divide 79 < a <7 < --- < 7, = bsuch that 7| —
7 < . Let K; = spt f C X. Write K = |J; 4;, where A; := K N f~'(7;_1,7;], where
A; are disjoint borel sets.

Choose open U} D A; such that u(U}) < pu(A;)+e/n. Define U; := U](ﬂf_l(rj_l, Tj+€)
and notice U, is open, and U; D A; N f~Y(rj_1,7; + €) = A, since A; contains its
intersection with f~1(7j_1,7; + ). u(U;) < p(U}) < u(Aj) +¢/n, and f(z) < 75 + ¢,
Vx € U;.

Now K = UA; C Uj, so there exists partition of unity {h;}_; subordinate to
{U;}7_; such that h; < Ujand K < 7%, hj. Now f = >"_, fh; and thus we have
AF =50, A(fhy).

Recall that we derived that u(K) = inf{Ag : K < g}. So, K < }7"_, h; implies u(K) <
A (Z?Zl hj) = >_j_1 Ahj. Define the simple function s = } 7, (7; — €)L4;, where we
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defined to be A; = K N f~!(r;_1,7;]. Notice that if z € K,3!j such thatz € A;, and
then s(z) = 7; —e < 751 < f(x). So s < f. In particular,

é(n—smw): / sdu < / Fdu

Now,

Af = ZA j SZ(TjJre)Ahj
j=1

(T] +e)h;

—Z la| + 7j + €)Ah; f|a|ZAh~

J=1
>lal+To+e H,_/
>p(K)

<Y “(lal + 75 + &)Ah; — |a|u(K)
j=1

Notice that (Ja| + 7 +¢)Ah; < (la|+7j+¢)((Aj) +e/n)as Ah; < p(Uj) < p(Aj)+¢/n
following h; < U;. So we can write

M:

Af <Y (la] + 75 + &) (u(A)) +e/n) — |a|u(K)
j=1
:;(|al+73+5) j)+;(|a|+Tj+€)na|u(K)
<(la|+|b]+€)e
= (Z 7+ e ) (lal + [b] + €)e

—_

=

3

( (7 +2e —e)p A'))+(a+b+€)6
7=1

< /fdu +2ep(K) + (la] + [b] + €)e
|

Discussion. If we just look at the statement of the theorem, it doesn’t intuitively remind
us of the intermediate steps that comes along with the proof. We choose to formulate
this second version of the Riesz theorem:

Theorem. [Riesz Representation Theorem, Restated. ] Suppose X is LCH and
A : C.(X) — Ris a positive linear functional. Then, 3! borel reqular outer measure
p:P(X)— [0,00] such that Af = [ fdu(f € Ce(X)) AND
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1. p(K) < ooV compact K
2. wW(E) =inf{u(V): ECV,Vopen}forall E C X.
3

. p(E) = sup{u(K) : K C E, K compact}V open E, and VE € M, with u(F) <
00

There is an additional condition on X that can be assumed such that (3) can be stated
VE € M.

Definition. A set A C X is o-compact if A = U°, K;, K; compact.
Example. R? = UX, B(0,1).
Note. In the rest of the section, ; comes from Riesz.

Remark. Suppose A is o-compact, A € M,,. If 1(A) < oo, inner regularity holds. Does
ithold if p(A) = c0? Yes,as A = |J K;, K1 C K3 C ---. 50,00 = p(A) = lim p(K;) =
sup{u(K) : K C A, K compact} = co = 11(A), and inner regularity holds.

Lemma. Let X be LCH and o-compact. Let i« be an outer measure as in Riesz, then

1. If A € Mu(X), then Ve > 0,3 a closed set F C A, and an open set U D
Asuch that u(U \ F) < e.

2. Inner Regularity holds VA € M, (X).

3. If A e M, (X),3F, set (countable union of closed sets, borel in particular) H C
A and a G;-set (countable intersection of open sets) G O A such that u(G'\ H) =
0

Proof. (1) Write X = UfL K;, K; compact. Let A € M, (X). Notice that AN K; €
M, (X) since K; borel, and p(A N K;) < pu(K;) < oo using outer regularity. Let U; D
AN K; beopen such that u(U;) < u(AN K;) +¢/21+L. This implies pu(U; \ (AN K;)) <
g/2* since U;, AN K; € M, and u(ANK;) < oo. Let U :=JU; D U(AN K;) = A,
U open. Also, u(U\ 4) = 11 (U(U; \ A)) < 5 p(U:\ A) < X u(Ui\ (ANK,) < /2. W
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