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1 Greedy Algorithms

1.1 Scheduling Problem

Suppose we are given a set P of project, |P | = n. Each requests pi ∈ P occupies
interval [si, fi), where fi = si + ti, where ti is time required to process a request.

The goal is to choose subset Π ⊆ P such that 0

1. No two projects in Π have overlapping intervals.

2. The number of selected projects |Π| is maximized.

1.2 Greedy Algorithm Proof Outline

1. Greedy Choice Property: Show that first choice is not “fatal” i.e. at least one
optimal solution contains this. This often uses the exchange argument, stating
that “if an optimal solution does not choose q, it can be turned into an equally
good solution that does.”

2. Inductive Structure: There is a strictly smaller subproblem of the same type, and
any feasible solution to the subproblem combined with our previous choice q
yield a feasible solution to P .

3. Optimal Substructure: If the subproblem is solved optimally, then combining
this with our first choice solves the larger problem optimally.

1.2.1 Proof of Scheduling

Proof. Greedy Choice Property: Suppose Π∗ is an optimal solution for project set P .
If q ∈ Π∗, we are done. Otherwise, let q be the earlist finish time item and x be the first
time in p, so it must be that fp < fx. Thus Π∗ := Π∗ − {x} + {q} is an equally good
solution.

Inductive Structure: Let P ′ := P − {q} − {projects conflicting with q}, which is a
strictly smaller subproblem. Now, if Π is some feasible solution to P ′, Π + {q} is a
feasible solution to P since q does not conflict with anything in Π′.

Optimal Substructure: Suppose P ′ is a strictly smaller subproblem and Π′ is an
instance of its optimal solution.

Putting it all together, proceed by induction on |P |. When |P | = 1, this is clear. Other-
wise for |P | = n, we pick greedy choice q. Notice that for the corresponding subprob-
lem P ′, |P ′| < n. By the inductive hypothesis, EFT gives an optimal solution to P ′. So
by the inductive structure and optimal substructure, they provide an optimal solution
to P .

■
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1.3 Network Problem

Given an undirected, non-negative weighted graph G : (V,E), where |V | = n, |E| =
m, and w(e) is the weight of edge e.

Our goal is to select a set of edges T ⊆ E such that G = (V, T ) is connected and sum
of weights is minimized.

Observation: T does not contain cycles.

Solution: With Prim’s algorithm, the greedy choice is to pick the minimum weight
edge.

Lemma: Some optimal solution picks the minimum weight edge.

Proof. GCP: Suppose the lowest weight edge is (u, v). If an optimal solution contains
(u, v), we are done. Otherwise if some optimal solution didn’t contain (u, v), there
must be some path connecting (u, v). If (u, v) is added, this becomes a cycle which
is impossible. Thus we can remove the heaviest edge and this is still a minimum
spanning tree.

Inductive Substructure: General idea is we can combine the solved vertices.

Optimal Substructure: Clear.

■

Kruskals Algorithm. First, sort edges by weight. Look at edges in order. When
looking at e, add e to T if adding it doesn’t generate a cycle and continue.

Borurkas

2 Divide and Conquer

Example 1. Consider the problem of multiplying two n-digit numbers. Naively, we
multiply each digit of a number with another number, so the running time is Θ(n2).

A more efficient solution for multiplication in base 2 can be written for X,Y can be
written when X and Y are divided in half into Xh, Xl, Yh, Yl. Then,

XY = Zhh2
n + Zhl2

n/2 + Zll

• Zhh = xhyh

• Zll = xlyl

• Zhl = (xh − xl)(yh − yl) + Zhh + Zll
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Then, the complexity becomes T (n) = 3T (n2 ) + Θ(n).

Example 2. Suppose we want to find the minimum distance between a set of n points.

Solution 1. For preprocessing, we sort P by x to get Px. Let Q be all points left of
the midpoint, or Px[1, ...,

n
2 ]. Also let R be all points right of the midpoint, or Px[

n
2 +

1, ..., n].

Now for the base case, either there’s one point, so closest distance is ∞ or there are
two points, and we just find the distance between them.

The divide step is where we compute the mid points and get Q,R. The reursive step is
where dl =ClosestPair(Q), dr =ClosestPair(R), and δ = min{dl, dr}.

For the combine step, we calculate the closet pair such that one point is on the left, one is
on the right. However, this takes Θ(n2) so the total runtime is T (n) = 2T (n/2)+Θ(n2)

Here, our “bottleneck” is on the Θ(n2) term!

Solution 2. The intuition to this idea we create an δ-radius y-strip. Then, we only
need to consider at most 4 points from the other side of the δ strip, since we don’t
need to consider distances greater than δ. We can write the algorithm as following,
preprocessed with sorting of x of Θ(n log n)

1. Divide Px into two halves using midpoint Θ(1)

2. Recursively compute dl and dr, compute δ = min{dr, dl}.
3. Filter points into y-strip. Θ(n)

4. Sort y-strip by y coordinate. Θ(n log n)

5. For every point p, look at y-strip in sorted order starting at this point and stop
when we see a point with y coordinate greater than py + δ.

Overall runtime: T (n) = 2T (n/2) + Θ(n log n) =⇒ Θ(n log2 n).

Solution 3. The key idea is that in preprocessing, we have a Px and Py. So when we
filter points into y-strip, we can look at the points directly.

Overall runtime: T (n) = 2T (n/2) + Θ(n) = Θ(n log n)

2.1 Maximum Contiguous Subsequence Sum (MCSS)

Problem. Given array of integers S = {s1, ..., sn}, find

argmaxi,j

{ j∑
k=i

sk

∣∣∣∣ 1 ≤ i ≤ j ≤ n}

Naive algorithm gives O(n3) time. Using DP gives O(n2) naively. For an approach
using Divide and Conquer, consider the following algorithm:
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Algorithm 1 Naive MCSS with Divide and Conquer
function MCSS(S, i, j)

if i = j then
return S[i]

else
mid←

⌈ i+j
2

⌉
L←MCSS(S, i,mid)
R←MCSS(S,mid+ 1, j)
C←maximum continuous subsequence including mid
return max{L,R,C}

end if
end function

Here, calculation of C takes Θ(n) time when we consider a Θ(n) calculation of maxi-
mum prefix and suffix. So,

T (n) = 2T
(n
2

)
+Θ(n) = Θ(n log n)

Notice here that C (hence the left suffix and right prefix) can be calculated through
strengthening the recursion to return the max suffix and prefix values. So, consider the
algorithm below in algorithm 2:

Algorithm 2 Modified MCSS with Divide and Conquer
function MCSS(S, i, j)

if i = j then
m← S[i]
p← S[i]
s← S[i]
sum← S[i]
return S[i]

else
mid←

⌈ i+j
2

⌉
(ml, pl, sl, suml)←MCSS(S, i,mid)
(mr, pr, sr, sumr)←MCSS(S,mid+ 1, j)
mcss← max{ml,mr, sl + pr}
mP ← max{pl, suml + pr}
mS ← max{sr, sumr + sl}
sum← suml, sumr

return (mcss,mp,ms, sum)
end if

end function
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Then, this is improved to

T (n) = 2T (n/2) +O(1) = O(n)

3 Dynamic Programming

3.1 Problem

Problem Statement. Suppose there are 2 string S, T with length n,m respectively.
Find the minimum number of insertions or deletions to convert S to T .

3.2 General Correctness Proof Outline

Complete Choice Property. THe solution makes one of the choices that we consider.

Inductive Structure. Once you make any choice, you are left with a smaller problem
of the same type. Any first choice and a feasible solution to the subproblem = feasible
solution to the entire problem.

Optimal Substructure. If we optimally solve the subproblem for particular choice c,
and combine it with c, the resulting solution is the optimal solution that makes choice
c.

3.3 Problem 2

For a given set of positive numbers S, is there a subset X ⊆ S such that for a positive
integer K, ∑

x∈X
x = K

Clearly, a brute force solution by trying all subsets gives 2n time, for |S| = n.

Note that our algorithmic runtime will depend on K, and it is considered pseudo-
polynomial.

Now, consider ordering elements of S arbitrarily. Then at every time, we have recur-
sive calls to SS(S[1, ...,m−1],K) and SS(S[1, ...,m−1],K−S[m]). Then, make a k×n
cell where S[i, j] = true if we can construct a subset with the first j elements of S to
form sum i.

4 Max Flow

4.1 Max Flow Problem

This problem states that for a directed and weighted graph (V,E), let there be unique
source and sink nodes s, t. Suppose each edge has a capacity c(e). Then, a valid flow
assigns integer f(e) to each edge such that the following are satisfied:
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• Capacity Constraint: 0 ≤ f(e) ≤ c(e)

• Flow Conservation:
∑

e∈Ein(v)
f(e) =

∑
e∈Eout(v)

f(e), ∀v ∈ V \ {s, t}.

We want to compute the maximum flow, or |F | =
∑

e∈Eout(s)
f(e) =

∑
e∈Ein(t)

f(e)

4.2 Ford-Fulkerson (FF) Algorithm

The idea is the we have a residual graph GR that stores the remaining capacity of
backward flow, which is equivalent to the amount of flow. With each flow on original
edges, we increase the flow by increasing the remaining capacity of backward flow.
Formally:

1. Initialize the residual graph GR = R

2. Find some augmentating P with capacity k

3. Push flow so that c(e)− = k, c(ẽ)+ = k, where e is original edge and ẽ is mirror
edge. The c here denotes remaining capacity, differing from notatation above.

4. Repeat 2 and 3 until no augmenting path can be found.

Correctness Proof. We induct on augmenting paths. For the base case, f(e) on all edges,
so capacity constraint and flow conservation are satisfied.

Then suppose by induction there is a valid flow and we found a path P and we can
push flow k onto the path. We look at capacity constraints and flow conservation.

For an edge e in P , if it is a forward edge, by construction we can have k pushed on
it and there are capacity remaining. Now if e is a back/mirror edge with remaining
residual capacity≥ k, then this means that the flow of the forward edge is greater than
k, so we can reduce k and still be positive.

For flow conservation, we consider four scenarios for any vertex v on P .

1. Both forward edges: k is added to in and out, constraint satisfied.

2. Both back edges: k reduced to both in and out, constraint satisfied.

3. Forward edge in, mirror edge out: We actually “redirected” the flow k originally
from the mirror edge into the forward edge. So the input remains the same.

4. Mirror edge in, forward edge out: Similar to above, we redirected the output.

Note that FF terminates since every time it finds an augmenting path, the total flow
increases.

Runtime: For each iteration, it takes Θ(m + n) to find a path using BFS or DFS, and
this is a maximum of |F | times. So this becomes Θ(|F |(m+ n)) ■

We will use the max-flow min-cut theorem to prove the optimality of FF!
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4.3 Graph Cut

Definition. A graph cut is a partition of vertices into 2 subsets S and T , where
s ∈ S, t ∈ T . The cut capacity is defined as the sum of capacity of edges from vertex
to S to vertex in T .

C(S) =
∑

u∈S,v∈T
c(u, v)

Lemma. For all valid flows f , |f | ≤ C(S)∀ cut S. This means that |f | ≤ C(S∗), where
S∗ denotes cut of the smallest capacity.

Proof. All flow must go through one of the cut edges. ■

Lemma. FF prouces a flow f = C(S∗).

Proof. Let f̂ be the flow found by FF such that no more paths can be augmented in
GR. This means that there is no path from s to t with remaining capacity > 0. Now,
define Ŝ as all the vertices that can be reached from s using edges with capacities > 0.

Here t /∈ Ŝ because otherwise there is another path. Note that this means that all
paths from Ŝ to V \ Ŝ have remaining capacity 0. In other words, all forward edges
are saturated, and all backward edges are empty. In particular, empty backward edges
means that no flow is going into Ŝ.

Therefore |f̂ | = C(Ŝ), and so Ŝ is the minimum cut, and |f̂ | is the maximum cut. ■

4.4 Bipartite Matching

Suppose we have n classes and n rooms and we want to match classes to different
rooms with different properties.

Formally, we have bipartite graph G = (V,E) where vertices are either in L or R, and
edges only go between vertices of different sets. For a matching, we find a subset
M ⊆ E such that each vertex has at most one edge from M incident on it, and we
want the matching of the largest size. We want to reduce this to maximal flow problem.

Reduction Solution. Given G = (V,E), we want to construct a graph G′ = (V ′, E′)
where

max-flow(G′) = max-matching(G)

Construct s that connects to all vertices in L and t that connects with vertices inR, and
the capacity on all edges is 1.

Claim. G′ has a flow of k if and only if G has matching of size k¿

Correctness Proof. Suppose G has matching of size k, then we can extend the edges to
s and t to create flow of size k.
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For the other direction, suppose G′ has flow of size k. Consider any vertex v ∈ L. Its
input is at most 1, so its output is at most one. Similar for v ∈ R. ■

4.5 Lecture

Consider an image segmentation problem where for each pixel i, we denote pi as the
probability that i ∈ A, the foreground object. For every pair of adjacent pixels, ci,j is
the cost of placing boundary between i and j. In this case, a segmentation would be
assignment of pixel to A (foreground) or B (background). The goal is to maximize

A∗, B∗ = argminA,B

∑
i∈A

pi +
∑
i∈B

(1− pi)−
∑

i,j∈ boundary

ci,j


Using the fact that

∑
i∈A pi +

∑
i∈A(1 − pi) +

∑
i∈B pi +

∑
i∈B(1 − pi) = N , where N

is the total number of pixels, this is equivalent to minimizing∑
i,j∈ boundary

ci,j +
∑
i∈A

(1− pi) +
∑
i∈B

pi

We can construct a graph as following:

1. Cut graph into S, T from a connected graph of s, t, and a node for each pixel pi.

2. The edge from s to all pixels are denoted by pi, with edge from pixels to t de-
noted as (1− pi).

3. For each pair of adjacent pixels, connect them with an edge of weight ci,j .

∑
i∈S

(1− pi) +
∑
i∈T

pi +
∑

i∈S,j∈T or vice versa

ci,j

We claim that the image segmentation cost C if and only if graph G has a cut of cost
C.

Proof. (⇐=) : Suppose graphG has a cut of costC. Then, put all pixels representations
by vertices in S in A. If i ∈ S in G’s cut, then put pixel i in A. If i ∈ T in G’s cut, put
pixel i in B. Thus this equals the cost of image segmentation.

( =⇒ ) : Clear. Given image segmentation of cost C, put node i in S if i ∈ A and put
it in T if i ∈ B ■

Thus the algorithm to solve for this problem is clear:

1. Construct correspondingn graph G.

2. Use FF to calculate max-Flow.
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3. Use result to compute min-cut.

4. Reconstruct segmentation.

5 Reduction

In general, mapping from one problem to another known solvable problem which
preserves solutions is called reduction. Formmally, problem L reduces to K (L ≤ K,
which means L is no harder than K)if there is a mapping Φ from any instance l ∈ L
to some instance Φ(l) ∈ K ′ ⊂ K, such that Φ(l) can lead to a solution to l. This can be
written into following steps:

1. Reduction: l→ Φ(l)

2. Solve problem Φ(l)

3. Convert the solution for Φ(l) to l.

5.1 Efficient Reduction

A reduction Φ : L→ K is efficient (L ≤p K) if for any l ∈ L:

• Φ(l) is computable from l in polynomial l times.

• Solution to l is computable from solution of Φ(l) in polynomial (|l|) times.

We call L poly-time reducible to K, or L poly-time reduces to K.

Theorem. If L ≤p K and there is a polynomial time algorithm to solve K, then there
is a polynomial time algorithm to solve L.

Proof. It suffices to show that |Φ(l)| = poly(|l|), this the problem reduces to |poly(l)|+
poly(ϕ(l)).

Since we can construct Φ(l) using poly(l) time and at every step we can only write
constant data, it has to be that poly(|l|) = Φ(l) ■

5.2 Canonical Decision Problem

Does an instance l ∈ L of an optimization problem have a feasible solution with objec-
tive value k? For maximization, this means that our objective ≥ k and for minimiza-
tion, ≤ k. We denote this easier, decision version of the problem as DL.

Clearly, DL ≤p L. Suppose (l, k) is an instance of DL, and we have Φ(l) ∈ L, where
Φ(l) gives objective value v∗(l), and we can just check if this is greater than k. Thus,
DL is clearly no harder than L.

Lemma. If v∗(l) = O(c|l|) for constant c, then L ≤p DL.
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Proof. We can considerDL as a blackbox that returns true or false given (l, k). Naively,
we can run linear search and go through every value, which is not efficient. Rather,
we can try an exponential binary search, which is at log(v∗(l)) = poly(l) ■

Note that this means that we can use the contrapositive for the statement. If K is easy,
then L is easy. If L is hard, then K is hard

Example. Independent Set Problem. Suppose we are given undirected graph G =
(V,E), we find a subset of vertices V such that no two vertices of S are connected by
an edge. We believe this to be a hard problem and we can take this as given.

Example. Vertex Cover. Given undirected graph G = (V,E), a subset C ⊆ V is called
a vertex cover if C contains at least one end point of every edge so that ∀(u, v) ∈ E,
either u ∈ C or v ∈ C. We want V C(G, j) to return G is G has a vertex cover of size
≤ j, or false otherwise.

Claim: ISET ≤p V C. Note we don’t need to show V C ≤p ISET . We show that V C
of size |V | − k iff there exists ISET of size k.

Lecture

Proof for ISET(G, k) ≤p VC(G′, q). The idea is that we want to show a construction of
(G, k) to (G′, q). First, need to show that if G has an ISET of size k, then G′ has VC of
size q. For the other direction, it suffices to prove that for the G′ previously of size q
(not arbitary), then G has a ISET of size k.

In particular, we related them by q = |V | − k. Thus for this direction, assume S is a
vertex set with |S| = k. Also let C = V − S, and claim that C is a vertex cover with
|C| = |V | − k = q. Assume by contradiction ∃(u, v) not covered. Then u, v /∈ C =⇒
u, v ∈ S, so S not ISET, a contradiction.

Otherwise, suppose ∃ VC of size |V |−k denoted as C. Then suppose by contradiction
S = V − C is not an independent set, then ∃(u, v) such that u, v ∈ S, u, v /∈ C, and
(v, u) not covered. So C not a VC, a contradiction.

Remark: When we say polynomial time, it usually refers to polynomial in size of in-
puts measured by bits. This means that particular emphasis should be placed on size
of values within problems.

6 P/NP

Definition. Polynomial-time Solvable, or P is a class of decision problems L such
that there is a polynomial-time algorithm that correctly answers yes or no for every
instance l ∈ L
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NP does not refer to non-polynomial. Rather, this means non-deterministic poly-
time. In particular, let l be an instance of decision problem L that the answer happens
to be “yes”. A certificate c(l) for l is a “proof” that the answer for l is true.

Example. We want to know if there is a path from s to t. The instance would be a
G(V,E), s, t for l. The certificate would be the path.

For a problem to be in NP, it needs to have “useful” certificates. Namely, it should be

• Not too long (poly(l))

• Easy to check

Definition. A verifier algorithm is one that takes instance l ∈ L and certificate c(l)
and returns true if certificate prove l is a true instance and false otherwise.

V is a poly-time verificate for L if it is a verfier and runs in poly(|l|, |k|) time. This
runtime must be polynomial.

Thus, NP is a class of decision problems such that there exists certificate schema c and
a verifier algorithm V such that

1. certificate is poly(l) in size.

2. V is poly(l) in size.

In other words,

• P : class of problems you can solve in polynomial time.

• NP: class of decision problems we can verify true instances in polynomial time
given polynomial time certificate.

Claim. P ⊆ NP

Proof. Let L be a problem in P , we want to show that ∃ polynomial size certificate
with polynomial time verifier.

By assumption, there is an algorithm A which solves L in polynomial time. In this
case, the certificate is empty. For verfier (l, c), we can run A on L and return the
answer. ■

Definition. A NP-hard problem is a decision problem L where ∀K ∈ NP, K ≤p L.
This means that L is at least as hard as all the problems in NP Thus solving L means
able to solve any problem in NP with polynomial cost.

Lemma. Let L be an NP-hard problem. If L ∈ P, then P = NP .

Proof. Say L has a poly-time solution, then we have a poly-time solution for all K in
NP, so NP ⊆ P ■
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Definition. L is NP-complete if it is both NP-hard and L ∈ NP .

L is called NP-optimization if the canonical decision problem is NP complete. If any
NP optimization is solvable, NP = P .

NP Complete Problem: Satisfiability (SAT). Suppose we have a set of Boolean vari-
ables and boolean formulas consisting of AND, OR, and NOT. Given a formula Φ, is
there a setting M of variables such that Φ evaluates to True under this setting. If there
is such an assignment, then Φ is satisfiable. This is shown to be NP-Complete.

In general, SAT is NP-complete as following:

• ∃ certificate schema and a polynomial time verifier. Namely, c satisfies the as-
signment and v checks that M makes Φ true.

• SAT is NP-hard. Accept this as a fact.

Then we can show a problem L to be NP-complete by:

1. Show L ∈ NP by having a poly(l) certificate schema and verification algorithm.

2. Prove SAT ≤p L, i.e., solving L solves SAT and thus solves all problems in NP
in poly-time

Meanwhile, there’s an easier version of SAT called Conjugate normal form, CNF,
where the formula ϕ is an “and of ors”. Each variable or its negation is called a literal,
the literals are combined into clausers using or, and there are and of clauses. This is
NP complete.

In fact, 3-SAT, where every clause has 3 literal, is also NP complete. There are n vari-
ables, m clauses for a total of 3m literals.

Example. ISET is NP-Complete.

Proof. Suppose we have a problem L.

1. ISET ∈ NP. Certificate would be given set of k vertices, and verification checks
that there are no edges that have the same vertex.

2. Show ISET is NP-hard by proving 3SAT ≤p ISET by constructing a reduction
from 3SAT to ISET, and showing that ISET is harder than 3SAT.

Reduction mapping: Make a vertex for each literal, and connect the vertex within each
clause. All variables are connected to all their negations. ■

6.1 Lecture

Proof outline for ISET NP-hard

For a ∈ A, b ∈ B, let there be a reduction satisfying

1. reduction take poly time

14



2. a is true ⇐⇒ b is true. In other words, solution ψ is satisfiable iff g has inde-
pendent set of size k.

7 7

Fill in from video

7.1 Class Lecture

Scheduling Problem. Suppose there are n jobs and each job has a release time ri,
deadline di, and a continuous executaion time of ti (non-preemptive. ) We want to
find a way to schedule all such jobs.

First, prove SCHED is in NP.

Then show that SCHED is NP-hard; in particular, reduce form SSS ≤P SCHED.
Formally, denote Y ⊆ S such that

∑
ai ∈ Y ai = t, where t is the target. Then let the

execution time be ai for each number, and let X be the sum of all numbers in S. Then
it suffices to have original jobs and a new created job with starting time t and deadline
t + 1 with execution time 1. Then, this suffices as a valid subset sum solution to the
original problem.

Component Grouping. Let there be an undirected graph not necessarily connectd.
We define a component as a connected subgraph. For this graph G, we want to check
is there is a subset of connected components of size k.

Note that we can also naively reduce this from SSS, by making components of corre-
sponding sizes. However, note that this reduction is NOT polynomial time and thus
would not work.

8 Approximation Algorithms

Recall: NP-optimization problems are problems where the canonical DP is NP-complete.
There are things we can do to avoid this:

• Solve small instances

• Hard instances are rare and we can perform average case analysis

• Consider special cases

For approximation algorithms, we find a “good” solution in polynomial time but may
not be optimal. Question is, how do we quantify the quality of the solution?

We use approximation ratio for an algorithm A for an NP-optimization L. For an
instance l A finds solution cA(l) when the optimal solution is c∗(l). The ratio would
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be either

max
l

cA(l)

c∗(l)
= α min

l

cA(l)

c∗(l)
= α

The greedy VC O(|E|) where we go through every edge that is not covered always
finds a 2-approximation.

Example. Consider a maximum cut problem with G = (V,E), undirected and un-
weighted. Let a cut partition vertices into S and V \ S, and size of cut be number of
edges that cross from S to V \ S.

We can have a LOCAL-CUT algorithm, where we start with an arbitrary cut of G.
While we can move a vertex v from its partition to the other while increasing size of
the cut, do that.

It turns out that this is a 1/2 approximation with O(|E||V |2) time.

8.1 Lecture

Set Cover. Suppose there is a set X of all cards and pack j where SJ ⊆ X . One
can either buy whole pack or not. Let the collection of sets be Y . The goal is pick a
C such that ∪Si∈C Si = X , and minimize |C|

Greedy solution. Initialize C = ∅, and while X is not covered, let Ui−1 be the elements
not covered after picking i−1 set. For each unpicked set S, compute a δ(S) = Ui−1∩S.
We want to pick the Si such that δ(Si) is maximized.

Using harmonic sum, we have thatHn :=
∑n

i=1
1
i = Θ(log n). Suppose d is the number

of elements in the largest Si. We claim that GSC has an approximate ratio of Hd.

First, the proof claims that GSC is ln(m) approximation where m = |X|. Denote C∗ as
optimal solution and C as greedy solution. Let (mi) be a decreasing sequence count-
ing the number of remaining uncovered elements, such that m0 is initialized as all
elements of X . For a round i, the set that covers the most amount of elements must
cover at least mi−1−1

|C∗| elements. Thus we have

mi ≤ mi−1

(
1− 1

|C∗|

)
=⇒ mi = m0

(
1− 1

|C∗|

)
Now suppose that after j rounds, there is only one more uncovered elements, so this
can be written as

1 ≤ m
(
1− 1

|C∗|

)
= m

((
1− 1

|C∗|

)|C∗|
) j

|C∗|

≤ me−
|C∗|
j =⇒ j ≤ |C∗| logm

Thus we can write |C| ≤ |C∗| lnm+ 1

To further reduce this, consider the cost of our algorithm to be |C| and if an element
was added in step i when set Si is picked, then we covered δ(Si) elements by adding
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one set, where the cost of each of the elements is 1
δ(Si)

. If element xwas covered in step

i, the then cost is c(x) = 1
δ(Si)

. The total cost of GSC is
∑

x∈X Cx =
∑C

i=1 δ(Si) ·
1

δ(Si)
=

|C|.

Now, the claim is that for a set S, the cost paid by GSC to cover all elements of S is at
most H|S|, so that

∑
x∈S c(x) = H|S|. Suppose GSC covers S in the order of x1, ..., x|S|.

Then when xj is covered, xj , ..., x|S| are uncovered. At this point, if S was picked, it
would cover |S| − j + 1 elements. In other words, δ(Si) ≥ |S| − j + 1. Thus the cost is
given by C(xj) = 1

δ(Si)
≤ 1

|S|−j+1 . Therefore summing voer elements of S, we have

|S|∑
i=1

c(xj) =

|S|∑
i=1

1

|S| − j + 1
=

1

|S|
+ ... = H|S|

Going back, we can write

|C| =
∑
x∈X

c(x) ≤
∑
x∈C∗

∑
x∈Sk

c(x)

 =
∑

Sk∈C∗

H|Sk| ≤
∑

Sk∈C∗

Hd = Hd

∑
Sk∈C∗

1 = Hd · |C∗|

9 Randomized Algorithms

The idea of hashing with chaining is that we have integers in range U = [0, N −1]. We
want to map them into a hash table with m slots. The goal is to hash a set S ⊆ U, |S| =
n.

When multiple values are hashed to the same slot, it is know as a collusion and we
have a list with all elements. Thus the runtime of insert, query and delete of elements
is Θ(length of chain). The worst case is when all elements are in the same bucket,
making the cost Θ(n). We therefore want chains to be Θ(1) as long as |S| is reasonably
sized. We want S to hash uniformly.

Simple Uniform Hashing assumes that the n elements is picked uniformly from U , and
we therefore see that this function works fine. Note that this is a very unrealistic
assumption.

Consider an adversarial model that sees the hash generating code and generates S so
that the hash table behaves badly. Thus, we use randomized algorithms that makes
random inner choices. There are two kinds of random algorithms:

• Monte Carlo: Running time is fixed, may be wrong or bad quality

• Las Vegas: Answer is always correct, but sometimes algorithms may run slowly.

In the hasing example, we will be randoming the choice of hash function h from a
family of hash functions H . If we randomly pick a hash function from this family,
then the probability that the hash function is bad on any particular input sequence is
small. Thus, the adversary cannot pick a bad input.
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Suppose we havem buckets and input x ̸= y. Ideally, we want it so that P(x, y collides) =
1
m

Definition. H is a universal family of hash functions if ∀x ̸= y, x, y ∈ {0, ..., N − 1},

Ph∈H (h(x) = h(y)) =
1

m

Lemma. Given a universal hash function family H and S = {a1, ..., an} ⊆ N. For any
probability 0 ≤ δ ≤ 1, if n ≤

√
4mδ, the chance that no two keys hash to the same slot

is ≥ 1− δ.

Proof. First, the idea is to compute expected value of collision.

For x, y ∈ S, define an indicator random variable

Cx,y =

{
1, if h(x) = h(y)

0, otherwise

Then, we have

E[Cx,y] = 1 · 1
m

+ 0 =
1

m

Now, defineCx as the random variable that represents the cost of inserting/searching/deleting
x from hash table, and Cx ≤ total number of elements that collide with x. Then we
have

Cx =
∑

y∈S,x̸=y

Cx,y =⇒ E[Cx] = E

 ∑
y∈S,x̸=y

Cx,y

 =
∑

y∈S,x̸=y

1

m
=
n− 1

m

This means that E[Cx] = Θ(1) if n = O(m)

Suppose C is the total number collusions, so C =
∑

x∈S Cx/2 since each collusion is
counted twice, and

E[C] =
1

2

∑
x∈S

E[Cx] =
1

2

∑
x∈S

n− 1

m
=
n(n− 1)

m
≤ n2

2m

Then if we want E[C] < δ, we can have n =
√
2mδ.

Recall the markov inequality equation P[X ≥ kE[X]] ≤ 1
k . Applying on C,

P
(
C ≥ 1

δ
E[C]

)
< δ ⇐⇒ P (C ≥ 1) < δ ⇐⇒ P[C = 0] >

1

δ

■
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More generally, for a universal hash function family, if the number of keys n <
√
Bmδ,

the probability that at most B + 1 keys hash to the same slot > 1− δ

Example. Consider quicksort, which is based on partitioning and assumes all ele-
ments are distinct. For a partition A[p...r], it picks a pivot A[r] and rearranges into
Alow < A[r] < Ahigh. This rearrangement can be done in linear time, where the quick-
sort algorithm returns the pivot.

We assume the adversary knows our algorithm but doesn’t know about our random
choices. Note that it is important the pivot position cannot be determined. T (n) =
T (n− c) + Θ(n) = Θ(n2) and T (n) = 9

10T (n) +
1
10T (n) + Θ(n) = Θ(n log n).

Therefore if we select pivot variable randomly and have k be the rank of the proof,
then we can write T (n) = T (k) + T (n− k − 1) + Θ(n). Then,

E[T (n)] ≤ E[T (k) + T (n− k − 1) + cn]

= E[T (k)] + E[T (n− k − 1)] + E[cn]

= cn+
n−1∑
j=0

P[j = k]T (j) +
n−1∑
j=0

P[j = n− k − 1]T (j)

= cn+

n−1∑
j=0

P[j = k]E[T (j)] +
n−1∑
j=0

P[j = n− k − 1]E[T (j)]

= cn+
2

n

n−1∑
j=0

E[T (n)]

This is thus at worst Θ(n2), and we want to show that this is Θ(n log n). We want to
show that T (n) = c′n log n+ 1.

Base Case: When n = 1, T (1) = 1 and this holds true.

Inductively, if this holds true for j < n,

T (n) =
2

n

n−1∑
j=0

T (j) + cn =
2

n

n−1∑
j=0

(c′j log j + 1) + cn

=
2

n
c′

n−1∑
j=0

j log j +
2

n

n−1∑
j=0

1 + cn

=
2c′

n

(
1

2
n2 log n− 1

8
n2
)
+ 2 + c′n

= c′n log n− 1

4
c′n+ 2 + c′n

≤ c′n log n+ 1

where the third line equality follows from a given equation. Thus we conclude this is
Θ(n log n)
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10 Online Algorithm

Elevator Example. Suppose I want to go to the top floor as quickly as possible. There
is a elevator that takes E time to get to the top. There are also stairs that take S time
to climb, S > E. However, I don’t know when the elevator arrives.

This is online in the sense that I am missing information. If it is offline, I would know
the elevator arrives in T .

Definition. An online algorithm must make decisions without full information about
the problem instance, and/or it doesn’t know the future. An office algorithm has full
information about the problem instance.

We use competitive ratio to quantitfy quality of online algorithms. Consider a mini-
mization problem L and l be an instance, so that C∗(l) is the optimal offline solution
andA is the online algorithm, with CA(l) being its solution. Then, an online algorithm
is α-competitive if CA(l)

C∗(l) ≤ α ∀l. In other words, α = maxl
CA(l)
C∗(l) .

In the elevator problem, if stairs is always taken, the ratio could be S
E . If we always

wait for elevator, T could be infinity since the elevator could break. Rather, we want to
wait for R time and take stairs if it has not arrived. If we take R = S, the competitive
ratio is 2.

Proof. The optimal solution takes the elevator if T + E ≤ S

• If OPT takes elevator, so T < S − E, we also take elevator. CR = 1.

• If OPT takes stairs immediately, OPT=S, and we take at worst 2S time. Then,
CR=2.

■

In fact, consider R = S − E.

• If OPT takes elevator, we also take elevator, CR=1.

• If OPT takes stairs, we wait S − E and then take stairs, and CR = 2− E
S .

Then, the competitive ratio is 2− E
S . Here, waiting for more or less time is no good.

Example. Cache. Data is organized in blocks. If CPU accesses data in cache, it is
called a cache hit. If CPU accesses data not in cache, it is a cache miss. Then if a
block needs to be brought into cache from main memory, and the cache is already full,
another block needs to be kicked out.

If we know the order of access, simple kick out the one farthest in the future.

An online algorithm is that we can kick out the least recently used (LRU) cache. We
claim that LRU is k-competitive.
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Proof. Split up the sequence into subsequences such that each subsequence contains
k+1 distinct blocks. With LRU in each subsequence, there can be at most k+1 misses.
In particular, note that the last element must be different from prevous ones.

With OPT, there is at least 1 miss in each distinct block.

In fact, this can be improved so that LRU has at most k misses with blocks of size
k. ■

Many sensible algorithms are k-compeittive. In fact, there is a lower bound where no
deterministic algorithm can be better than k-competitive.

Rather, a solution we can have is to use resource augmentation. Let the offline algo-
rithm have k cache lines and online algorithm have ck cache lines, c > 1. Then, we
claim that the competitive ratio would be ∼ c

c−1

Proof. Let LRU have cache of size ck. Divide the sequence into subsequence such that
there are ck distinct pages. So there are less than ck cache misses for each subsequence.
Meanwhile, OPT has cache of size k, and there are greater than (c − 1)k cache misses
for each subsequence.

So CR≤ c
c−1 . The actual competitive ratio is actually c

c−1+ 1
k

, so for c = 1, this is k.

■

11 11

Randomized Caching Suppose there is a cache of k blocks and a sequence of accesses
σ. The cost of a randomized caching algorithm is the expected number of cache misses
on σ.

Competitive Ratio = max
σ

E[Cost of alg A on σ]
Cost of OPT on σ

Randomized Marking Algorithm: We let every block in cache have a 1 bit mark.

• Initially, all blocks are unmarked, so all bits are set to 0.

• When a block is accessed, it is marked and the bit is set to 1.

• We want to always randomly pick out of the unmarked block to evict.

• Once all blocks in the cache are marked, unmarked all blocks

Claim. This randomized marking algorithm has competitive ratio log k, where k is the
number of cache blocks. No deterministic algorithm can be better than k.

Proof. We divide the sequence into phases, where phase starts when nothing is marked,
and ends when a miss causes everything to get unmarked. We observe that every
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phase has exactly k distinct block accesses. Also, all pages originally in cache are still
in cache at the end.

Now, for phase j let old pages be blocks that were in cache at the beginning of the
phase, and new blocks be ones brought into cache in phase j but are not old.

Now, we find the lower bound. Let m∗(σ) be the number of misses, and we claim
that m∗(σ) ≥ 1

2

∑
j nj , where nj is the number of new pages in phase j. In phase 1,

m∗(1) ≥ 1. For phase j, note that phase j − 1 accessed k distinct pages. Then phase j
has nj new pages, so the two pages has k + nj different pages combined. So,

m∗(j − 1) +m∗(j) ≥ nj =⇒ m∗(0)︸ ︷︷ ︸
=0

+2
∑
j

m∗(j)
∑
j

nj =⇒ m∗(σ) ≥ 1

2

∑
j

nj

Rest of the proof done in class. ■

Min-cut Example. Suppose there is an undirected graph G = (V,E), find S ⊂ V such
that edges from S to V − S is minimized.

Randomized Algorithm: Initialize sets S(v) = {v} for all v. Repeat for |V | − 2 times:

• Randomly choose edge e = {u, v}

• Delete edges between S(u) and S(v)

• Merge S(u) and S(v)

When 2 sets remain, return the sets. We claim that this randomized algorithm returns
minimum cut with p > 1/

(|V |
2

)
= 2/(|V |(|V | − 1)).

Proof. Suppose the min cut have k edges, labeled with set F . ■

11.1 Lecture

Denote old blocks to be blocks that weren’t in cache at thte end of phase j − 1., and
new blocks be blocks accessed in phase j that are not old.

Now, suppose m∗(j) is the number of misses by OPT in phase j, and we claim that
m(σ) ≥ 1

2

∑
j nj , where σ is the entire sequence.

Proof. Assume in phase 1 the cache starts empty, then clearlym∗(1) ≥ k. In phase j−1,
k unique pages are accessed. At j + 1, it accessed nj new pages. The two combined
accesses k + nj unique pages.

In other words, from the start of phase j − 1 to the end of j, there must be at least nj
unique misses.

m∗(j − 1) +m∗(j) ≥ nj =⇒ m∗(0) +m∗(1)+ =⇒ m∗(1) + ... ≥
∑
j

nj
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Since m∗(0) = 0 and this ends with 0, 2
∑

j m
∗(j) ≥

∑
j nj =⇒

∑
j m

∗(j) ≥ 1
2

∑
j nj .

Now we claim that the upper bound is E[m(σ)] ≤ Hk ≤
∑

j nj .

Recall that competitive ratio is ≤ Hk
∑

j nj

1
2

∑
j nj

= 2Hk = O(lg k).

Considering phase j, there are usually some misses due to old pages. Note that there
are 1 miss per new block nj .

Suppose that naively, within phase j, we first have nj new blocks, look at some num-
ber O of old blocks, and meet X . Let n be the number of pages, and this claims that
the probability P[X evicted before accessed] is n

k−O . Prof. Agrawal gives the following
proof:

Write

P[X evicted| n new pages, o old pages, k unmarked pages] := P[X| n,O, k]

Case 1 is when 1st access evicts X .

Case 2 is when the 1st access evicts one of old pages that are accessed before X .

Case 3 is when the 1st access evicts one of the other old pages

So,

P[X|n,O, k] = 1

k
+
O

k
· P[X|n,O − 1, k − 1] +

k −O − 1

k
· P[X| n− 1, O, k]

Prove by induction that P[X|n,O, k] = n
k−O .

For base cases, consider all three variables. Inductively, assume true for values smaller
than n,O, k, and we have

P[X|n,O, k] = 1

k
+
O

k

(
n

k −O

)
+
k −O − 1

k

(
n− 1

k − 1−O

)
=

1

k
(
on+ nk − on

k − 0
) =

n

k −O

Now let χi be the indicator variable denoting whether the ith page was evected (1 if
true and 0 otherwise), and E[# cache misses due to old pages] =

E
k−nj∑
i=0

χi ≤
k−nj∑
i=1

E[χi] =

k−nj∑
i=1

nj
k − (i− 1)

= nj

(
1

k
+

1

k − 1
+ · · ·

)
So the expectation of number of misses in phase j equals

= nj

(
1 +

1

k
+

1

k − 1
+ · · ·+ 1

k − (k − nj) + 1

)
≤ nj

(
1 +

1

2
+ · · ·+ 1

k

)
= njHk

■
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